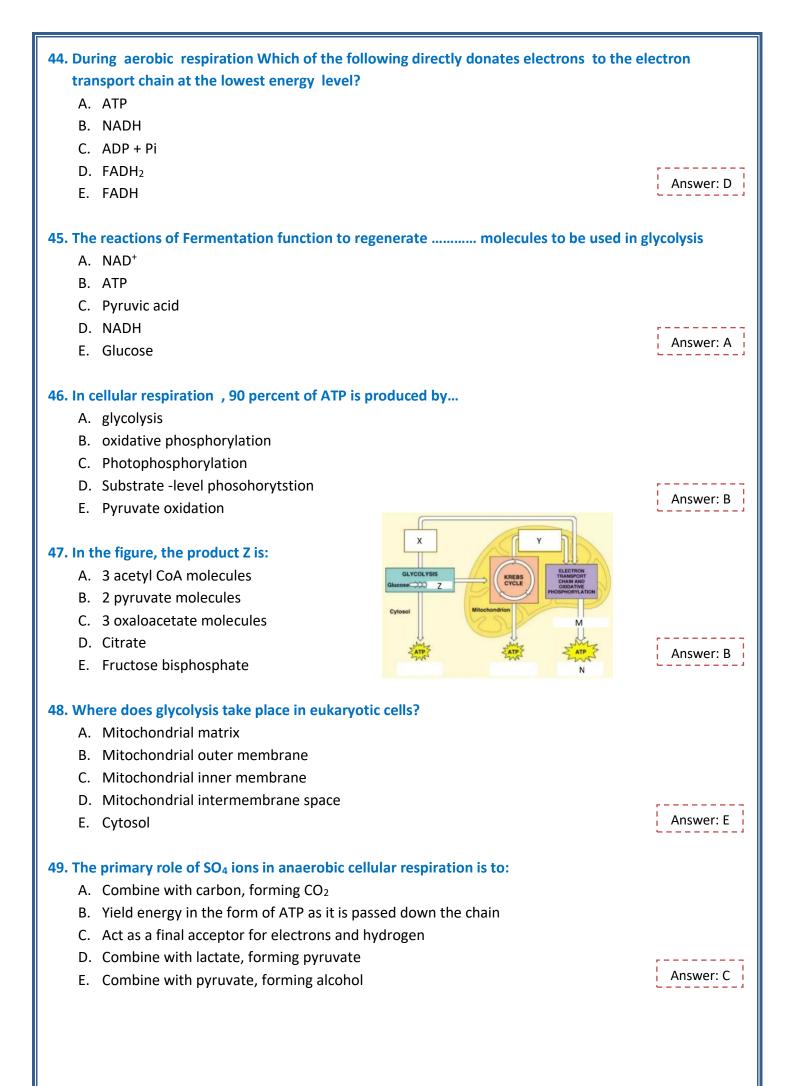

Dr.Ahmad Al-Qawasmi

<u>Chapter 6</u>	
1. A negative delta G for a chemical processes indicates:	
A. the reaction is exergonic	
B. the products of the chemical process store less energy than the reactants	
C. the reaction can happen spontaneously	
D. the reaction can proceed without an input of energy	Answer: F
E. all of the above is correct	
2. In a spontaneous change:	
A. The free energy of a system decrease	
B. The system becomes move stable	
C. The released free energy can be harnessed to do work	
D. Always move toward equilibrium	
E. All above are correct	Answer: E
3. In Exergonic reactions, energy is	
A. transformed into light	
B. used	
C. either released or used	·
D. transformed into heat	Answer: E
E. released	
4. Enzymes catalyze chemical reactions by	
A. adding heat to the system	
B. reacting with substrate to form new products	
C. increasing activation energy	
D. decreasing activation energy	Answer: D
E. decreasing free energy	
5. The active site of an enzyme is the region that	
A. Binds to a noncompetitive inhibitor	
B. Binds to an allosteric inhibitor	
C. Binds to an allosteric activator	
D. Binds to a heme group	Answer: E
E. Binds to substrate(s)	
6. catabolic pathways	
A. Provide the cell with energy, primarily in the form of ATP to work	
B. Are endergonic	
C. Combine molecules into more energy-rich molecules	
D. Are non-spontaneous	
E. Don't need enzyme catalyst	Answer: A

14. Whic	h of the following is (are) true for anabolic pathways?	
	hey do not depend on enzymes	
В. Т	hey are usually highly spontaneous chemical reactions	
С. Т	hey consume energy to build up polymers from monomers	
D. T	hey release energy as they degrade polymers to monomers	
Ε. Τ	hey consume energy to decrease the entropy of the organism and its environment	Answer: C
	h term most precisely describes the cellular process of breaking down large molec	ules into
	ler ones?	
	atalysis	
	1etabolism	
	nabolism	
	ehydration	Answer: E
E. C	atabolism	L
16. Some	e bacteria are metabolically active in hot springs because:	
Α. Τ	hey are able to maintain a lower internal temperature	
В. Н	igh temperatures make catalysis unnecessary	
С. Т	heir enzymes have high optimal temperatures	
	heir enzymes are completely insensitive to temperature	
Ε. Τ	hey use molecules other than proteins or RNAs as their main catalysts	Answer: C
17. Incre	asing the substrate concentration in an enzymatic reaction could overcome which	of the
follo	wing?	
A. D	enaturization of the enzyme	
B. A	llosteric inhibition	
C. C	ompetitive inhibition	
D. S	aturation of the enzyme activity	Answer: C
E. Ir	sufficient cofactors	Answer: C
18 The 6	enzyme can speed the chemical reaction by:	
	peeding the movement of molecules	
	owering the activation energy	
	icreasing the number of substrate molecules	
	Il of the above	
	one of the above	Answer: B
2. 1.		
19. Why	is ATP an important molecule in metabolism?	
A. It	s hydrolysis provides an input of free energy for exergonic reactions.	
B. It	provides energy coupling between exergonic and endergonic reactions	
C. It	s terminal phosphate group contains a strong covalent bond that, when hydrolyzed,	releases free
e	nergy.	
D. It	s terminal phosphate bond has higher energy than the other two.	·
	is one of the four building blocks for DNA synthesis	Answer: B


20. Which of the following is most similar in structure to ATP?	
A. A pentose sugar	
B. ADNA nucleotide	
C. An RNA nucleotide	
D. An amino acid with three phosphate groups attached	
E. A phospholipid	Answer: C
E. A phospholipid	
21. How does a non-competitive inhibitor decrease the rate of an enzyme reaction?	
A. By binding at the active site of the enzyme	
B. By changing the shape of the enzyme's active site	
C. By changing the free energy change of the reaction	
D. By acting as a coenzyme for the reaction	Answer: B
E. By decreasing the activation energy of the reaction	
22. The mechanism in which the end product of a metabolic path way inhibits an earlier s	tep in the
pathway is most precisely described as:	
A. Metabolic inhibition	
B. Feedback inhibition	
C. Allosteric inhibition	
D. Non-cooperative inhibition	Answer: B
E. Reversible inhibition	
23. In the cell, coupling reactions need the use of:	
A. Amino acids	
B. Light	
C. Sugars	
D. Fatty acids	Answer: E
E. ATP	
24. If an enzyme is added to a solution where its substrate and product are in equilibrium	what will
occur?	
A. Additional product will be formed	
B. Additional substrate will be formed	
C. The reaction will change from endergonic to exergonic	
D. The free energy of the system will change	
E. Nothing; the reaction will stay at equilibrium	Answer: E
25. Which of the following curves represent optimal temperature of a human enzyme?	
A. A	
B. B	
C. C	
D. D	
E. None of the above	Answer R
0 10 20 30 40 50 60 70 80 90 100 110	

 26. During a laboratory experiment, you discover that an enzyme-catalyzed reaction has kcal/mol. If you double the amount of enzyme in the reaction, what will be the Delerection? A. 40 kcal/mol B20 kcal/mol 	
C. 0 kcal/mol D. +20 kcal/mol E. +40 kcal/mol	Answer: B
 27. Induced fit results from binding of to an enzyme A. Vitamins B. Non-competitive inhibitor C. Specific substrate molecule 	
D. b and c E. None of the above	Answer: C
 28. If an enzyme in solution is saturated with substrate, the most effective way to obtain products is to: A. Add more of the enzyme B. Heat the solution to 90C C. Add more substrate 	in a faster yield of
D. Add an allosteric inhibitorE. Add a noncompetitive inhibitor	Answer: A
 29. Allosteric inhibitors act as: A. Competitive inhibitors B. Coenzymes C. Non-competitive inhibitors D. Cofactors 	Answer: C
E. Either competitive or non-competitive inhibitors	·
 30. Allosteric enzyme regulation is usually associated with: A. Lack of cooperatively B. Feedback inhibition C. Activating activity D. An enzyme with more than one subunit E. The need for cofactors 	Answer: D
31. This reaction could be an A. Endergonic B. Exergonic	Answer: B

Chapter 10

32. The figure shows: F. Chemiosmosis G. Substrate level phosphorylation H. Electrochemical gradient I. Oxidative phosphorylation J. Electron transport chain creating a proton motive force Answer: D 33. What is correct about the electron transport chain in anaerobic respiration? F. Can use oxygen as a final electron acceptor G. Occurs in aerobic bacteria H. Occurs in some prokaryotes I. It is the fermentation of glucose J. B and C are correct Answer: C 34. Which of the following statements describes the results of this reaction? $C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O + Energy$ A. C₆H₁₂O₆ is oxidized and O₂ is reduced B. O₂ is oxidized and H₂O is reduced C. CO₂ is reduced and O₂ is oxidized D. $C_6H_{12}O_6$ is reduced and CO_2 is oxidized Answer: A E. O₂ is reduced and CO₂ is oxidized 35. In alcohol fermentation, NAD⁺ is regenerated from NADH by: A. Reduction of acetaldehyde into ethanol B. Oxidation of pyruvate to acetyl CoA C. Reduction of pyruvate to lactate D. Oxidation of ethanol to acetyl CoA E. Reduction of ethanol to pyruvate Answer: A 36. What is the purpose of beta oxidation? A. Breaking down of glucose into 2 pyruvate molecules B. Breaking down of fatty acids into two carbon fragments C. Converting of glucose to fatty acid D. Converting of fatty acid to protein Answer: B E. None of the above **37.** In cellular respiration, energy flows in the sequence: A. Glucose - NAD+- electron transport chain -ATP B. Glucose - NADH - electron transport chain - proton motive force - ATP C. Glucose - NADH - electron transport chain- O2 D. NADH - glucose - pyruvate - Krebs cycle - H2O Answer: B E. Pyruvate - Acetyl CoA- Flavoprotein – ADP

38. Wh	ich of the following statements correctly describes the activity of Phosphofructoking	ase?
Α.	It is inhibited by AMP	
В.	It is activated by ATP	
С.	it is activated by Citrate	
D.	It catalyzes the conversion of fructose into fructose 6-phosphate	
E.	It is inhibited by citrate	
39. Upd	on oxidation of pyruvate to acety CoA, the product compound No 1 in the red circle	
	NADH CYTOSOL MITOCHONDRION	
	Coenzyme A	
	Acetate	
	acetyl coenzyme A	
	carbon dioxide	Answer: E
	Pyruvate Activit COA	
40. In a	ddtion to ATP, what are the end products of glycolysis?	
Α.	CO ₂ and H ₂ O	
В.	CO ₂ and pyruvate	
С.	H ₂ O, NADH and pyruvate	
D.	CO ₂ and NADH	Answer: C
E.	H ₂ O, FADH ₂ and citrate	
	bon dioxide (CO ₂) is released during which of the following stages of cellular respira Glycolysis and the oxidation of pyruvate to acetyl CoA	tion?
В.	Oxidation of pyruvate to acetyl CoA and the citric acid cycle	
C.	The citric acid cycle and oxidative phosphorylation	
	Oxidative phosphorylation and fermentation	
	Fermentation and glycolysis	Answer: B
42. Alm	nost all of the oxygen (O ₂) consumed in breathing is converted to:	
Α.	acetyl-CoA	
В.	water	
C.	Carbon dioxide (CO ₂)	
D.	ATP and NADH	Answer: B
E.	Pyruvate	Answer: B
43. The	starting molecule in the citric acid cycle that reacts with Acetyl CoA and is regenera	ited at the end
	he cycle:	
	Succinate	
	Fumarate	
	Alpha-ketoglutarate	
	Oxaloacetate	
	Pyruvate	Answer: D
_ .		

50. Production of ATP direct transfer of phosphate group from an organic subst	rate to ADP by enzymes is
called:	
A. Oxidative phosphorylation	
B. Substrate-level phosphorylation	
C. Photophosphorylation	
D. B-Oxidation	Answer: B
E. Deamination	
51. Which of the following is true about (Phosphofructokinase enzyme)?	
A. It is the "Pacemaker" of cellular respiration	
B. It is inhibited by Citrate	
C. It is inhibited by ATP	
D. It is stimulated by AMP	
E. All of the above are correct	Answer: E
52. In electron transport chain, NADH passes its electrons to:	
A. Ubiquinone (Q)	
B. Cytochrome c	
C. Cytochrome a3	
D. Flavin mononucleotide (FMN)	Answer: D
E. Cytochrome a	Aliswei. D
53. Which metabolic pathway is common to both fermentation and cellular res	piration of a glucose
molecule?	_
A. The citric acid cycle	
B. The electron transport chain	
C. Glycolysis	
D. Synthesis of acetyl CoA from pyruvate	
E. Reduction of pyruvate to lactate	Answer: C
54. Where is ATP synthase located in the mitochondrion?	
A. Cytosol	
B. Electron transport chain	
C. Outer membrane	
D. Inner membrane	
E. Mitochondrial matrix	Answer: D
55. In liver cells, the inner mitochondrial membranes are about five times the a	rea of the outer
mitochondrial membranes, what purpose must this serve?	
A. It allows for an increased rate of glycolysis	
B. It increases the surface for substrate-level phosphorylation	
C. It allows for an increased rate of the citric acid cycle	
D. It increases the surface for oxidative phosphorylation	
E. It increases the area for glycogen storage	Answer: D

	ine dinucleotide) gains a hydrogen atom, the molecule
becomes:	
A. Dehydrogenated	
B. Oxidized	
C. Reduced	
D. Redoxed	Answer: C
E. Hydrolyzed	·
57. When a glucose molecule loses a hydrogen ato	om as the result of an oxidation-reduction reaction, the
molecule becomes:	
A. Hydrolyzed	
B. Hydrogenated	
C. Oxidized	
D. Reduced	
E. An oxidizing agent	Answer: C
58. Energy released by the electron transport chai	n is used to pump H^+ into which location in eukaryotic
cells?	
A. Cytosol	
B. Mitochondrial outer membrane	
C. Mitochondrial inner membrane	
D. Mitochondrial intermembrane space	Answer: D
E. Mitochondrial matrix	
59. How does pyruvate enter the mitochondrion?	
A. Active transport	
B. Diffusion	
C. Facilitated diffusion	
D. Through a channel	
E. Through a pore	Answer: A
60. The number of NADH molecules produced from	n oxidation of one pyruvate to acetyl CoA and further
oxidation in Kreps cycle is:	
A. 3 NADH	
B. 6 NADH	
C. 4 NADH	
D. 8 NADH	Answer: C
E. None of the above	
61. In glycolysis, for each molecule of glucose oxid	ized to pyruvate:
A. Two molecules of ATP are used, and two m	olecules of ATP are produced
B. Two molecules of ATP are used, and four n	nolecules of ATP are produced
C. Four molecules of ATP are used, and two m	olecules of ATP are produced
D. Two molecules of ATP are used, and six mo	-
E. Six molecules of ATP are used, and six mole	

is:	rons to oxygen in the electron transport chain in mitochondria
A. FlavoproteinB. CoQ (Ubiquinone)	
C. Cytochrome C	
D. Cytochrome a3	Answer: D
E. Iron sulphur protein	
63. Which of the following factors control	the cellular respiration?
A. Intracellular ATP amount	
B. Intracellular AMP amount	
C. Citrate amount	
D. Only a and b	Answer: E
E. All of the above	
64. Before amino acids can enter into glyco	olysis and TCA cycle, their amino group must be removed by a
process called:	
A. Decarboxylation	
B. Dehydrogenation	
C. Carboxylation	
D. Deamination	Answer: D
E. Immunization	
65. Carbohydrates and fats are considered	high energy food because:
A. They have a lot of oxygen atoms	
A. They have a lot of oxygen atomsB. They have no nitrogen in their mak	
	eup
B. They have no nitrogen in their mak	eup ns
B. They have no nitrogen in their makC. They can have short carbon skeletc	eup ns
B. They have no nitrogen in their makC. They can have short carbon skeletoD. They have a lot of electrons associaE. They are easily reduced	eup ns ted with hydrogen
B. They have no nitrogen in their makC. They can have short carbon skeletoD. They have a lot of electrons associaE. They are easily reduced	eup ns ted with hydrogen
 B. They have no nitrogen in their mak C. They can have short carbon skeleto D. They have a lot of electrons associa E. They are easily reduced 	eup ns ted with hydrogen Answer: D
 B. They have no nitrogen in their mak C. They can have short carbon skeleto D. They have a lot of electrons associa E. They are easily reduced 66. How many electrons are needed to pass formation of one molecule of water?	eup ns ted with hydrogen Answer: D
 B. They have no nitrogen in their make C. They can have short carbon skeletor D. They have a lot of electrons associate E. They are easily reduced 66. How many electrons are needed to pass formation of one molecule of water? A. 1 	eup ns ted with hydrogen Answer: D
 B. They have no nitrogen in their mak C. They can have short carbon skeleto D. They have a lot of electrons associa E. They are easily reduced 66. How many electrons are needed to pass formation of one molecule of water? A. 1 B. 2 C. 4 	eup ns ted with hydrogen Answer: D
 B. They have no nitrogen in their mak C. They can have short carbon skeleto D. They have a lot of electrons associa E. They are easily reduced 66. How many electrons are needed to pass formation of one molecule of water? A. 1 B. 2 	eup ns ted with hydrogen Answer: D
 B. They have no nitrogen in their mak C. They can have short carbon skeleto D. They have a lot of electrons associa E. They are easily reduced 66. How many electrons are needed to pass formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH₂ 	eup ns ted with hydrogen Answer: D s the electron transport chain of the mitochondria for the Answer: B
 B. They have no nitrogen in their make C. They can have short carbon skeletor. D. They have a lot of electrons associate. They are easily reduced 66. How many electrons are needed to pase formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH2 	eup ins ted with hydrogen S the electron transport chain of the mitochondria for the
 B. They have no nitrogen in their mak C. They can have short carbon skeleto D. They have a lot of electrons associa E. They are easily reduced 66. How many electrons are needed to pass formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH2 67. Which process in eukaryotic cells will p A. Electron transport 	eup ns ted with hydrogen Answer: D s the electron transport chain of the mitochondria for the Answer: B
 B. They have no nitrogen in their make C. They can have short carbon skeletor. D. They have a lot of electrons associate. They are easily reduced 66. How many electrons are needed to pass formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH2 67. Which process in eukaryotic cells will per A. Electron transport B. Glycolysis 	eup ns ted with hydrogen Answer: D s the electron transport chain of the mitochondria for the Answer: B
 B. They have no nitrogen in their mak C. They can have short carbon skeleto D. They have a lot of electrons associate E. They are easily reduced 66. How many electrons are needed to pass formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH2 67. Which process in eukaryotic cells will p A. Electron transport B. Glycolysis C. The citric acid cycle 	eup ns ted with hydrogen Answer: D s the electron transport chain of the mitochondria for the Answer: B
 B. They have no nitrogen in their make C. They can have short carbon skeletor. D. They have a lot of electrons associate. They are easily reduced 66. How many electrons are needed to pass formation of one molecule of water? A. 1 B. 2 C. 4 D. 6 E. 2 from NADH and 1 from FADH2 67. Which process in eukaryotic cells will per A. Electron transport B. Glycolysis 	eup ns ted with hydrogen Answer: D s the electron transport chain of the mitochondria for the Answer: B

68. The energy responsible for ATP production during cellular respiration:

- A. Heat energy
- B. Light energy
- C. Food
- D. Proton motive force
- E. None of the above

69. Chemiosmosis ATP synthesis (oxidative phosphorylation) occurs in:

A. All respiring cells, both prokaryotic and eukaryotic, using oxygen or other electron acceptors

Answer: D

Answer: A

- B. All cells, but only in the presence of oxygen
- C. Only in mitochondria, using either oxygen or other electron acceptors
- D. Only in eukaryotic cells, in the presence of oxygen
- E. Only in prokaryotic cells, in absence of oxygen

