Chapter 10:Fluids

Lecture 1 The University of Jordan/Physics Department Prof. Mahmoud Jaghoub أ.د. محمود الجاغوب

10-1] Phases of Matter

There are three common phases of matter:

i) Solid: fixed shape and fixed volume.

ii) Liquid: Variable shape and fixed volume

iii) Gas: variable shape and variable volume

Gases and Liquids don't maintain their shape (No fixed shape) > can flow and collectively referred to as Fluids.

A fourth less common type of matter is plasma. It is a collection of positive ions and free electrons. This requires very high temperatures.

Density =
$$\frac{Mass}{Volume}$$
 \Rightarrow $D = \frac{m}{V}$

Example 10-1]

What is the mass of a solid iron wrecking ball of radius 18 cm?

$$M = \int V = 7800 \times \frac{4}{3} \pi (0.18)^3$$

= 190 kg.

For inon:
$$SG = \frac{7800}{1000} = 7.8$$

Specific Gravity (SG) the SG = density of material density of water at 42

At
$$4^{\circ}$$
, $f_{\infty} = 10000 \text{ kg/m}^{3}$.
For inon: $SG = \frac{7800}{1000} = 7.8$

10-3] Pressure in Fluids

Pressure: magnitude of the force per unit

F F_{SIM}O area, where the force is perpendicular

to the area.

Pressure is a scalar quantity. F is perpendicular to the area.

A units of pressure $\rho = \frac{F}{A} \Rightarrow CPJ = \frac{V}{m^2} = Pascal$.

Example 10-2]

Calculating pressure. A 60-kg person's two feet cover an area of 500 cm^2 .

(a) Determine the pressure exerted by the two feet on the ground. (b) If the person stands on one foot, what will be the pressure under that foot?

9)
$$p = \frac{F}{A} = \frac{mg}{A} = \frac{60 \times 9.8}{500 \times 10^{-4}} = 12 \times 10^{3} \frac{N}{m^{2}} = 12 \times 10^{3} R_{0}$$

6)
$$p' = \frac{F}{(A|2)} = 2\frac{mg}{A} = 24 \times 10^3 \text{ Pa}$$
.

Q 91% Q

Static Fluids (Fluids at lest)

Two important properties

1) At a point inside the liquid, the pressure is the same in all directions.

FIGURE 10-1 Pressure is the same in every direction in a nonmoving fluid at a given depth. If this weren't true, the fluid would be in motion.

Evidence: the very small volume of the shown cube of the fluid is at rest. If the

Q 91% **⊕**

pressures were different > cube of liquid would move.

2) The pressure of any static fluid is always perpendicular to any surface that is in touch with the fluid.

FIGURE 10-2 If there were a component of force parallel to the solid surface of the container, the liquid would move in response to it. For a liquid at rest, $F_{\parallel}=0$.

If the force of the Huid on the container had a component

Fig parallel to the boothers wall \Rightarrow the wall will act on the fluid with an opposite force downwards, which would move the fluid. But since the fluid is at rest \Rightarrow Fig = ∞ .

Calculating the Pressure due to the liquid at a height h below the surface of the liquid.

The pressure of the liquid on the area A is due to the weight of the liquid.

FIGURE 10–3 Calculating the pressure at a depth *h* in a liquid, due to the weight of the liquid above.

NOTE that the pressure is independent of the area. A.

Example

Which container has the loggest pressure at the bottom?

(a)

Container (d) since h is largest

P= 39h

(d)

(e)

Pressure at the top surface is P1 = 29 9 h1

Presure at the bottom surface

(c)

Pressure at a faucet

The surface of the water in a storage tank is 30 m above a water faucet in the kitchen of a house. Calculate the difference in water pressure between the faucet and the surface of the water in the tank.

Fr>mg>object floats. Fr<mg>object sinks.

$$\Delta P = \mathcal{G}_{p} g \Delta h$$
 $h_{p-h_{1}=50}$
 $\Delta P = (1000)(9.8)(30) = 2.9 \times 10^{5} \frac{N}{m^{2}} = 2.9 \times 10^{5} Ra$