Chapter 23 Light: Geometric Optics

Lecture 1 The University of Jordan/Physics Department Prof. Mahmoud Jaghoub أ.د. محمود الجاغوب

23-13 The ray model of light

Ray model of light: light travels in straight lines in uniform
transparant media (like air and glass)

Light rays coming from every point on the pencil enter the eye => can see the object

In the figure, light rays travel in straight lines at different angles - Geometric Optics

Speed of light in vacuum is $c = 3 \times 10^8$ m/s

This bundle enters the eye A light

FIGURE 23–1 Light rays come from each single point on an object. A small bundle of rays leaving one point is shown entering a person's eye.

23-4] Index of Refraction

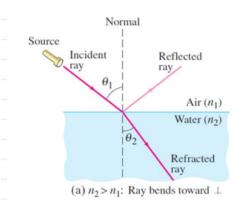
Light has the maximum speed of c= 3x108 mls in vacuum. In other transparant media, its speed is less than c.

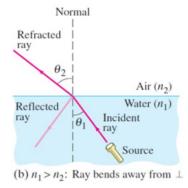
In water speed of light is 3c.

The ratio $n = \frac{c}{v}$ is defined as the index of refraction since $c > v \Rightarrow n > 1$ (Always, except for vacuum)

 \Rightarrow for water $\frac{3}{4} = \frac{c}{v} \Rightarrow v = \frac{4}{3}c = 1.33c = 2.26 \times 10^8 \text{ m/s}$

Cleary, n=1 for vacuum => light


has maximum speed of c = 3x108 mls


in vacuum. In all other transparant

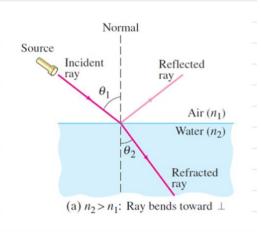
media n<1 i.e u<c

TABLE 23-1 Indices of Refraction [†]	
Material	$n=\frac{c}{v}$
Vacuum	1.0000
Air (at STP)	1.0003
Water	1.33
Ethyl alcohol	1.36
Glass	
Fused quartz	1.46
Crown glass	1.52
Light flint	1.58
Plastic	
Acrylic, Lucite, CR-39	1.50
Polycarbonate	1.59
"High-index"	1.6 - 1.7
Sodium chloride	1.53
Diamond	2.42

23-5] Refraction: Snell's Law

FIGURE 23–21 Refraction. (a) Light refracted when passing from air (n_1) into water (n_2) : $n_2 > n_1$. (b) Light refracted when passing from water (n_1) into air (n_2) : $n_1 > n_2$.

(a) light passes from air -> water -> for air _, for water light changes direction as it passes from air -> water. n. < n. 2


This change in direction is called Refraction.

Oi: angle of incidence

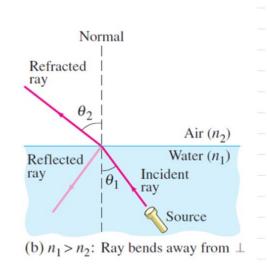
O2: angle of refraction

dotted vertical line is perpendicular to the surface between the two media (air and water

When $n_1 < n_2$ 1.e light moves from less dense \rightarrow higher dense medium \Rightarrow refracted light bends towards the normal 1.e $n_1 < n_2 \Rightarrow \theta_1 > \theta_2$

In Fig(b), light moves from water

> air > more dense > less dense


media 1.e n, > n2 for air

Refracted light bends away from

the normal, that is when

n, > N2

> 0, < 02

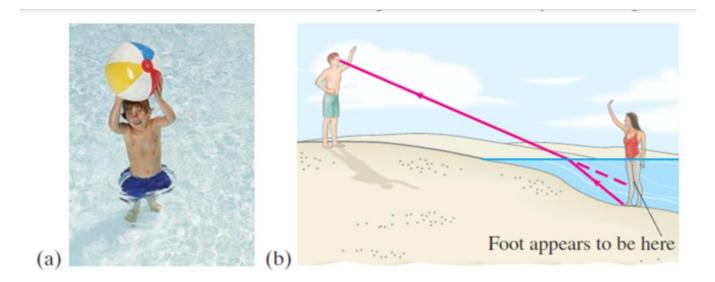
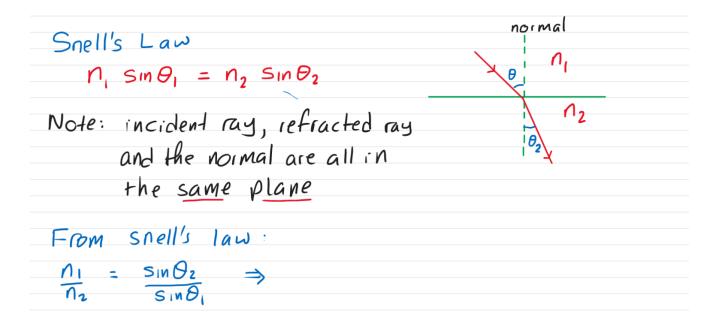
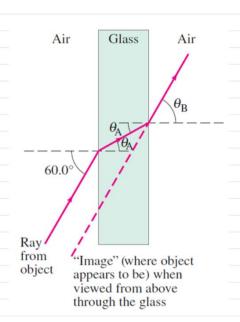



FIGURE 23–22 (a) Photograph, and (b) ray diagram showing why a person's legs look shorter standing in water: a ray from the bather's foot to the observer's eye bends at the water's surface, and our brain interprets the light as traveling in a straight line, from higher up (dashed line).

if $n_1 < n_2 \Rightarrow \theta_2 < \theta_1$ (refracted light bends towards normal) $n_1 > n_2 \Rightarrow \theta_2 > \theta_1$ (refracted light bends away from normal)


EXAMPLE 23–8 Refraction through flat glass. Light traveling in air strikes a flat piece of uniformly thick glass at an incident angle of 60.0° , as shown in Fig. 23–24. If the index of refraction of the glass is 1.50, (a) what is the angle of refraction θ_A in the glass; (b) what is the angle θ_B at which the ray emerges from the glass?

Apply Snell's law twice.

① Left hand side face $\alpha : r \rightarrow glas \Rightarrow n_1 = 1, n_2 = 1.50$ $\theta_1 = 60^\circ, \theta_2 = \theta_2 = ?$

$$\Rightarrow \theta_2 = 35.3^{\circ}$$

2) Right hand Side face $glass \rightarrow air : n_1 = 1.5, n_2 = 1.0$

from graph clearly angle of incidence is OA.

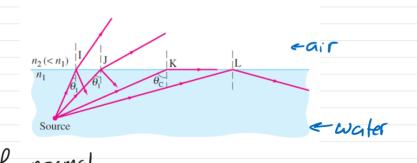
.. angle angle of refraction OB is

$$\sin \theta_{\rm B} = 1.50 \sin \theta_{\rm A} = 0.866 \Rightarrow \theta_{\rm B} = 60^{\circ}$$

: The direction of light is unchanged by passing through a flat piece of glass of uniform thickness.

23-6] Total Internal Reflection: Fibre Optics

When light passes from


a medium of of higher

density (low speed) to

a medium of lower density

(high speed) => light

is refracted away from the normal.

In the figure, for cases I and J pait of the ray is refracted and part is reflected. Since $n_1 > n_2 \Rightarrow$ refracted light is bent away from the normal. At angle θ_c (called critical angle) \Rightarrow Refracted ray travels parallel to the Surface; i.e $\theta_2 = 90^\circ$

From Snell's Law n, SIND, = n2 SIN D2

$$S_{IN} \partial_{I} = \frac{n_{2}}{n_{1}} S_{IN} \partial_{2}$$

. at
$$\theta_1 = \theta_c \Rightarrow \theta_2 = 90 \Rightarrow \sin \theta_c = \frac{n_2}{n_1}$$

If $\theta_1 > \theta_c \Rightarrow \sin \theta_1 > n_2$

But from Snell's law Sin 8 = n1 Sin 8,

: SIND >1 WHICH CANNOT HAPPEN

since SIND SI >

For $\theta_1 > \theta_c$ NO light is refracted and all light is reflected. This is called total internal reflection

Total internal reflection occurs ONLY when light passes from a medium of higher refractive index to a medium of lower refractive index.

Fibie Optics; Medical Instruments

Total internal reflection is the principle underlying the use of fibre optics.

Closs and plastic fibres as thin as

few micrometers are used to manufacture

optic fibres.

A bundle of such transparant fibres is called a fibre-optic cable or light pipe.

FIGURE 23–29 Light reflected totally at the interior surface of a glass or transparent plastic fiber.

Fibre-optic cables are use in:

- communications: lead to very fast and larg transmission of data. Fibres can support more than 100 separate wavelengths, each can carry more than 10 gigabits of data per second.

- medicine : Optic-fibres are used in medicine to provide clear pictures of human organs.

bronchoscope: optic-fibre cable used to view the lungs.

Colonoscope: optic-fibre cable used to view the colon.