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The Flow of Genetic Information

▪ The information content of genes is in the specific 

sequences of nucleotides

▪ The DNA inherited by an organism leads to

specific traits by dictating the synthesis of proteins

▪ Proteins are the links between genotype and 

phenotype

▪ Gene expression, the process by which DNA 

directs protein synthesis, includes two stages: 

transcription and translation
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Figure 17.1
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Figure 17.1a

An albino raccoon
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Concept 17.1: Genes specify proteins via 

transcription and translation

▪ How was the fundamental relationship between 

genes and proteins discovered?
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Evidence from the Study of Metabolic Defects

▪ In 1902, British physician Archibald Garrod first 

suggested that genes dictate phenotypes through 

enzymes that catalyze specific chemical reactions

▪ He thought symptoms of an inherited disease reflect 

an inability to synthesize a certain enzyme

▪ Cells synthesize and degrade molecules in a series 

of steps, a metabolic pathway
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Nutritional Mutants in Neurospora: Scientific 

Inquiry

▪ George Beadle and Edward Tatum exposed bread 

mold to X-rays, creating mutants that were unable to 

survive on minimal media

▪ Their colleagues Adrian Srb and Norman Horowitz 

identified three classes of arginine-deficient mutants

▪ Each lacked a different enzyme necessary for 

synthesizing arginine
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▪ The results of the experiments provided support for 

the one gene–one enzyme hypothesis

▪ The hypothesis states that the function of a gene is 

to dictate production of a specific enzyme
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Figure 17.2a
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Figure 17.2b

No
growth

Nutritional mutants placed in vials
with a variety of media.

Growth

Control: Wild-type cells
growing on
minimal medium

Minimal
medium

+ arginine

Minimal
medium
+ lysine

Vials observed for growth.

Minimal
medium
+ valine

5

6
© 2018 Pearson Education Ltd.



Figure 17.3
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Figure 17.3b
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Figure 17.3c
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Figure 17.3d
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The Products of Gene Expression:

A Developing Story

▪ Not all proteins are enzymes, so researchers later 

revised the hypothesis: one gene–one protein

▪ Many proteins are composed of several 

polypeptides, each of which has its own gene

▪ Therefore, Beadle and Tatum’s hypothesis is now 

restated as the one gene–one polypeptide 

hypothesis

▪ It is common to refer to gene products as proteins 

rather than polypeptides
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Basic Principles of Transcription and 

Translation

▪ RNA is the bridge between genes and the proteins 

for which they code

▪ Transcription is the synthesis of RNA using 

information in DNA

▪ Transcription produces messenger RNA (mRNA)

▪ Translation is the synthesis of a polypeptide, using 

information in the mRNA

▪ Ribosomes are the sites of translation
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▪ In prokaryotes, translation of mRNA can begin 

before transcription has finished

▪ In a eukaryotic cell, the nuclear envelope separates 

transcription from translation 

▪ Eukaryotic RNA transcripts are modified through 

RNA processing to yield the finished mRNA
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Figure 17.4
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Figure 17.4a_1
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Figure 17.4b_1
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Figure 17.4b_2
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Figure 17.4b_3
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▪ A primary transcript is the initial RNA transcript 

from any gene prior to processing

▪ The central dogma is the concept that cells are 

governed by a cellular chain of command: 

DNA → RNA → protein
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Figure 17.UN01
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The Genetic Code

▪ How are the instructions for assembling amino acids 

into proteins encoded into DNA? 

▪ There are 20 amino acids, but there are only four 

nucleotide bases in DNA

▪ How many nucleotides correspond to an

amino acid?
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Codons: Triplets of Nucleotides

▪ The flow of information from gene to protein is based 

on a triplet code: a series of nonoverlapping, three-

nucleotide words

▪ The words of a gene are transcribed into 

complementary nonoverlapping three-nucleotide 

words of mRNA

▪ These words are then translated into a chain of 

amino acids, forming a polypeptide
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Figure 17.5
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Figure 17.5a
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▪ One of the two DNA strands, the template strand, 

provides a template for ordering the sequence of 

complementary nucleotides in an RNA transcript

▪ The template strand is always the same strand

for a given gene

▪ The strand used as the template is determined by 

the orientation of the enzyme that transcribes the 

gene

▪ This in turn, depends on the DNA sequences 

associated with the gene
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▪ During translation, the mRNA base triplets, called 

codons, are read in the 5′ → 3′ direction

▪ The nontemplate strand is called the coding strand 

because the nucleotides of this strand are identical 

to the codons, except that T is present in the DNA in 

place of U in the RNA

▪ Each codon specifies the amino acid (one of 20)

to be placed at the corresponding position along

a polypeptide
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Cracking the Code

▪ All 64 codons were deciphered in the early 1960s

▪ Of the 64 triplets, 61 code for amino acids; 3 triplets 

are “stop” signals to end translation

▪ The genetic code is redundant (more than one 

codon may specify a particular amino acid) but

not ambiguous; no codon specifies more than

one amino acid

▪ Codons must be read in the correct reading frame 

(correct groupings) in order for the specified 

polypeptide to be produced
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Figure 17.6
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Evolution of the Genetic Code

▪ The genetic code is nearly universal, shared by the 

simplest bacteria and the most complex animals

▪ Genes can be transcribed and translated after being 

transplanted from one species to another
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Figure 17.7
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Figure 17.7a
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Figure 17.7b
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Concept 17.2: Transcription is the DNA-directed 

synthesis of RNA: a closer look

▪ Transcription is the first stage of gene expression
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Molecular Components of Transcription

▪ RNA synthesis is catalyzed by RNA polymerase, 

which pries the DNA strands apart and joins together 

the RNA nucleotides

▪ The RNA is complementary to the DNA template 

strand

▪ RNA polymerase does not need any primer

▪ RNA synthesis follows the same base-pairing rules 

as DNA, except that uracil substitutes for thymine
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Figure 17.8_1
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Figure 17.8_2
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Figure 17.8_3
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Animation: Transcription
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▪ The DNA sequence where RNA polymerase 

attaches is called the promoter

▪ In bacteria, the sequence signaling the end of 

transcription is called the terminator

▪ The stretch of DNA that is transcribed is called a 

transcription unit
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Synthesis of an RNA Transcript

▪ The three stages of transcription:

▪ Initiation

▪ Elongation

▪ Termination
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RNA Polymerase Binding and Initiation of 

Transcription

▪ Promoters signal the transcription start point and 

usually extend several dozen nucleotide pairs 

upstream of the start point

▪ Transcription factors mediate the binding of RNA 

polymerase and the initiation of transcription

▪ The completed assembly of transcription factors and 

RNA polymerase II bound to a promoter is called a 

transcription initiation complex

▪ A promoter called a TATA box is crucial in forming 

the initiation complex in eukaryotes
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Figure 17.9

5′
3′

5′
3′

5′
3′ 5′

3′

5′
3′

5′
3′

5′ 3′

Promoter
DNA

T

A

Nontemplate strand

A eukaryotic
promoter

TATA box

Transcription
factors

Start point Template
strand

Several
transcription
factors bind
to DNA.

RNA polymerase II

Transcription factors

RNA transcript

Transcription
initiation
complex
forms.

A

A AAAAT

T T T T T
1

2

3

© 2018 Pearson Education Ltd.



Elongation of the RNA Strand

▪ As RNA polymerase moves along the DNA, it 

untwists the double helix, 10 to 20 bases at a time

▪ Transcription progresses at a rate of 40 nucleotides 

per second in eukaryotes

▪ A gene can be transcribed simultaneously by several 

RNA polymerases

▪ Nucleotides are added to the 3′ end of the

growing RNA molecule
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Figure 17.10
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Termination of Transcription

▪ The mechanisms of termination are different in 

bacteria and eukaryotes

▪ In bacteria, the polymerase stops transcription at the 

end of the terminator and the mRNA can be 

translated without further modification

▪ In eukaryotes, RNA polymerase II transcribes the 

polyadenylation signal sequence; the RNA transcript 

is released 10–35 nucleotides past this 

polyadenylation sequence
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Concept 17.3: Eukaryotic cells modify RNA after 

transcription

▪ Enzymes in the eukaryotic nucleus modify pre-

mRNA (RNA processing) before the genetic 

messages are dispatched to the cytoplasm

▪ During RNA processing, both ends of the primary 

transcript are altered

▪ Also, in most cases, certain interior sections of the 

molecule are cut out and the remaining parts spliced 

together
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Alteration of mRNA Ends

▪ Each end of a pre-mRNA molecule is modified in a 

particular way

▪ The 5′ end receives a modified nucleotide 5′ cap

▪ The 3′ end gets a poly-A tail

▪ These modifications share several functions

▪ They seem to facilitate the export of mRNA to the 

cytoplasm

▪ They protect mRNA from hydrolytic enzymes

▪ They help ribosomes attach to the 5′ end
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Figure 17.11
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Split Genes and RNA Splicing

▪ Most eukaryotic genes and their RNA transcripts 

have long noncoding stretches of nucleotides that lie 

between coding regions

▪ These noncoding regions are called intervening 

sequences, or introns

▪ The other regions are called exons because they 

are eventually expressed, usually translated into 

amino acid sequences

▪ RNA splicing removes introns and joins exons, 

creating an mRNA molecule with a continuous 

coding sequence
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Figure 17.12
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▪ In some cases, RNA splicing is carried out by 

spliceosomes

▪ Spliceosomes consist of a variety of proteins and 

several small RNAs that recognize the splice sites

▪ The RNAs of the spliceosome also catalyze the 

splicing reaction
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Figure 17.13
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Ribozymes

▪ Ribozymes are catalytic RNA molecules that 

function as enzymes and can splice RNA

▪ The discovery of ribozymes rendered obsolete the 

belief that all biological catalysts were proteins
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▪ Three properties of RNA enable it to function as an 

enzyme

▪ It can form a three-dimensional structure because of 

its ability to base-pair with itself

▪ Some bases in RNA contain functional groups that 

may participate in catalysis

▪ RNA may hydrogen-bond with other nucleic acid 

molecules
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The Functional and Evolutionary Importance 

of Introns

▪ Some introns contain sequences that may regulate 

gene expression

▪ Some genes can encode more than one kind of 

polypeptide, depending on which segments are 

treated as exons during splicing

▪ This is called alternative RNA splicing

▪ Consequently, the number of different proteins an 

organism can produce is much greater than its 

number of genes
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▪ Proteins often have a modular architecture 

consisting of discrete regions called domains

▪ In many cases, different exons code for the different 

domains in a protein

▪ Exon shuffling may result in the evolution of new 

proteins
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Figure 17.14
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Concept 17.4: Translation is the RNA-directed 

synthesis of a polypeptide: a closer look

▪ Genetic information flows from mRNA to protein 

through the process of translation
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Molecular Components of Translation

▪ A cell translates an mRNA message into protein with 

the help of transfer RNA (tRNA)

▪ tRNAs transfer amino acids to the growing 

polypeptide in a ribosome

▪ Translation is a complex process in terms of its 

biochemistry and mechanics
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Figure 17.15
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The Structure and Function of Transfer RNA

▪ Each tRNA molecule enables translation of a given 

mRNA codon into a certain amino acid

▪ Each carries a specific amino acid on one end

▪ Each has an anticodon on the other end; the 

anticodon base-pairs with a complementary codon on 

mRNA
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▪ A tRNA molecule consists of a single RNA strand 

that is only about 80 nucleotides long

▪ Flattened into one plane to reveal its base pairing, a 

tRNA molecule looks like a cloverleaf
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▪ Because of hydrogen bonds, tRNA actually twists 

and folds into a three-dimensional molecule 

▪ tRNA is roughly L-shaped with the 5' and 3' ends 

both located near one end of the structure

▪ The protruding 3' end acts as an attachment site for 

an amino acid

© 2018 Pearson Education Ltd.



Figure 17.16
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Figure 17.16a
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Figure 17.16b
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Video: Stick and Ribbon Rendering of a tRNA
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▪ Accurate translation requires two steps

▪ First: a correct match between a tRNA and an amino 

acid, done by the enzyme aminoacyl-tRNA 

synthetase

▪ Second: a correct match between the tRNA anticodon 

and an mRNA codon

▪ Flexible pairing at the third base of a codon is called 

wobble and allows some tRNAs to bind to more 

than one codon
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Figure 17.17_1
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Figure 17.17_2
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Figure 17.17_3
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Figure 17.17a
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The Structure and Function of Ribosomes

▪ Ribosomes facilitate specific coupling of tRNA 

anticodons with mRNA codons in protein synthesis

▪ The two ribosomal subunits (large and small) are 

made of proteins and ribosomal RNA (rRNA)

▪ Bacterial and eukaryotic ribosomes are somewhat 

similar but have significant differences

▪ Some antibiotic drugs specifically target bacterial 

ribosomes without harming eukaryotic ribosomes 
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▪ A ribosome has three binding sites for tRNA

▪ The P site holds the tRNA that carries the growing 

polypeptide chain

▪ The A site holds the tRNA that carries the next amino 

acid to be added to the chain

▪ The E site is the exit site, where discharged tRNAs

leave the ribosome

© 2018 Pearson Education Ltd.



Figure 17.18
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Figure 17.18a
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Figure 17.18b
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Figure 17.18c
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Building a Polypeptide

▪ The three stages of translation:

▪ Initiation

▪ Elongation

▪ Termination

▪ All three stages require protein “factors” that aid in 

the translation process

▪ Energy is required for some steps, too
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Ribosome Association and Initiation of 

Translation

▪ The start codon (AUG) signals the start of translation

▪ First, a small ribosomal subunit binds with mRNA 

and a special initiator tRNA

▪ Then the small subunit moves along the mRNA until 

it reaches the start codon 

▪ Proteins called initiation factors bring in the large 

subunit that completes the translation initiation 

complex
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Figure 17.19
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Elongation of the Polypeptide Chain

▪ During elongation, amino acids are added one

by one to the C-terminus of the growing chain

▪ Each addition involves proteins called elongation 

factors 

▪ Elongation occurs in three steps: codon recognition, 

peptide bond formation, and translocation

▪ Energy expenditure occurs in the first and third steps
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▪ Translation proceeds along the mRNA in a

5′ → 3′ direction

▪ The ribosome and mRNA move relative to each 

other, codon by codon

▪ The elongation cycles takes less than a tenth of a 

second in bacteria
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Figure 17.20_1
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Figure 17.20_2
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Figure 17.20_3
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Termination of Translation

▪ Elongation continues until a stop codon in the mRNA 

reaches the A site of the ribosome

▪ The A site accepts a protein called a release factor

▪ The release factor causes the addition of a water 

molecule instead of an amino acid

▪ This reaction releases the polypeptide, and the 

translation assembly comes apart
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Figure 17.21_2
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Figure 17.21_3
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Completing and Targeting the Functional 

Protein

▪ Often translation is not sufficient to make a functional 

protein

▪ Polypeptide chains are modified after translation or 

targeted to specific sites in the cell
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Protein Folding and Post-Translational 

Modifications

▪ During its synthesis, a polypeptide chain begins to 

coil and fold spontaneously into a specific shape—a 

three-dimensional molecule with secondary and 

tertiary structure

▪ A gene determines primary structure, and primary 

structure in turn determines shape

▪ Post-translational modifications may be required 

before the protein can begin doing its particular job 

in the cell
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Targeting Polypeptides to Specific Locations

▪ Two populations of ribosomes are evident in cells: 

free ribosomes (in the cytosol) and bound ribosomes 

(attached to the ER)

▪ Free ribosomes mostly synthesize proteins that 

function in the cytosol 

▪ Bound ribosomes make proteins of the 

endomembrane system and proteins that are 

secreted from the cell

▪ Ribosomes are identical and can switch from free to 

bound
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▪ Polypeptide synthesis always begins in the cytosol

▪ Synthesis finishes in the cytosol unless the 

polypeptide signals the ribosome to attach to the ER

▪ Polypeptides destined for the ER or for secretion are 

marked by a signal peptide
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▪ A signal-recognition particle (SRP) binds to the 

signal peptide

▪ The SRP escorts the ribosome to a receptor protein 

built into the ER membrane
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Figure 17.22
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Making Multiple Polypeptides in Bacteria and 

Eukaryotes

▪ Multiple ribosomes can translate a single mRNA 

simultaneously, forming a polyribosome (or 

polysome)

▪ Polyribosomes enable a cell to make many copies of 

a polypeptide very quickly
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Figure 17.23
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Figure 17.23a
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▪ A bacterial cell ensures a streamlined process by 

coupling transcription and translation

▪ In this case the newly made protein can quickly 

diffuse to its site of function
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Figure 17.24
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Figure 17.24a
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▪ In eukaryotes, the nuclear envelope separates the 

processes of transcription and translation

▪ RNA undergoes processing before leaving the 

nucleus
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Figure 17.25
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Figure 17.25a
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Figure 17.25b
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BioFlix Animation: Protein Synthesis
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Animation: Translation
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Concept 17.5: Mutations of one or a few 

nucleotides can affect protein structure and 

function

▪ Mutations are changes in the genetic information of 

a cell 

▪ Point mutations are changes in just one nucleotide 

pair of a gene

▪ The change of a single nucleotide in a DNA template 

strand can lead to the production of an abnormal 

protein
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▪ If a mutation has an adverse effect on the phenotype 

of the organism, the condition is referred to as a 

genetic disorder or hereditary disease
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Figure 17.26
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Types of Small-Scale Mutations

▪ Point mutations within a gene can be divided into 

two general categories:

▪ Single nucleotide-pair substitutions

▪ Nucleotide-pair insertions or deletions
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Substitutions

▪ A nucleotide-pair substitution replaces one 

nucleotide and its partner with another pair of 

nucleotides

▪ Silent mutations have no effect on the amino acid 

produced by a codon because of redundancy in the 

genetic code

▪ Missense mutations still code for an amino acid, 

but not the correct amino acid

▪ Nonsense mutations change an amino acid codon 

into a stop codon; most lead to a nonfunctional 

protein
© 2018 Pearson Education Ltd.



Figure 17.27a
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Insertions and Deletions

▪ Insertions and deletions are additions or losses of 

nucleotide pairs in a gene

▪ These mutations have a disastrous effect on the 

resulting protein more often than substitutions do 

▪ Insertion or deletion of nucleotides may alter the 

reading frame, producing a frameshift mutation
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Figure 17.27b
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New Mutations and Mutagens

▪ Spontaneous mutations can occur during errors in 

DNA replication, recombination, or repair

▪ Mutagens are physical or chemical agents that can 

cause mutations

▪ Chemical mutagens fall into a variety of categories

▪ Most carcinogens (cancer-causing chemicals) are 

mutagens, and most mutagens are carcinogenic
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What Is a Gene? Revisiting the Question

▪ The idea of the gene has evolved through the history 

of genetics

▪ We have considered a gene as

▪ a discrete unit of inheritance 

▪ a region of specific nucleotide sequence in

a chromosome

▪ a DNA sequence that codes for a specific polypeptide 

chain
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▪ A gene can be defined as a region of DNA that can 

be expressed to produce a final functional product 

that is either a polypeptide or an RNA molecule
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Figure 17.27
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Figure 17.27c
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Figure 17.27d
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Figure 17.27e
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Figure 17.27f
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Figure 17.UN03
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Figure 17.UN04
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Figure 17.UN05a
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display consensus sequences, Nucleic Acids Research 18:6097–6100 (1990).
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Figure 17.UN05b
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Figure 17.UN05c
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Figure 17.UN05d
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Figure 17.UN06a
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Figure 17.UN06b
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Figure 17.UN07
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Figure 17.UN08
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Figure 17.UN09
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Figure 17.UN10
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Figure 17.UN11
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