Chapter 2: kinematics in one dimension

Done by: Abdelhadi Okasha

conceprs

2-1 Reference Frames and Displacement
2-2 Average Velocity
2-3 Instantaneous Velocity

2.0 INTRODUCTION

Mechanics

The study of the motion of objects, and the related concepts of force and energy

2.1 REFERENCE FRAMES AND DISPLACEMENT

- Frame of reference : نقطة الإسناد
- E.g. on frame of reference: A person walked to a train at a speed of $2 \mathrm{~m} / \mathrm{s}$, when he got in the train, the train moved at a speed $80 \mathrm{~m} / \mathrm{sec}$, then this person walked in the train while it's moving at a speed of $2 \mathrm{~m} / \mathrm{s}$, what is the:
Person speed while he is walking on the floor when the floor is the frame of reference? $2 \mathrm{~m} / \mathrm{s}$ person speed in the train while he is walking when the train is the frame of reference? $2 \mathrm{~m} / \mathrm{s}$ person speed in the train while he is walking when the floor is the frame of reference? $82 \mathrm{~m} / \mathrm{s}$

Trains speed 80 m / sec

- Internal frame of reference : when the frame of reference is constant or moving at a constant speed (Newton's law applies in this field)

2.1 REFERENCE FRAMES AND DISPLACEMMENT

FIGURE 2-3 Standard set of $x y$ coordinate axes, sometimes called "rectangular coordinates."

- We often draw a set of coordinate axes, to represent a frame of reference.
- X \& Y axes are perpendicular to each other
- Objects positioned to the right of the origin of coordinates (0) on the x axis have an x coordinate which we almost always choose to be positive; then points to the left of 0 have a negative x coordinate. The position along the y axis is usually considered positive when above 0, and negative when below 0 .
- In three dimensions, a z axis perpendicular to the x and y axes is added

2.1 REFERENCE FRAMES AND DISPLACEMENT

- Example: A person starts at $x=0 \mathrm{~cm}$ on a piece of graph paper and walks along the x axis to $x=20 \mathrm{~cm}$, he then turns around and walks back to Determine $\mathrm{x}=-10$ cm. Determine: (a) the person's displacement and (b) the total distance traveled.
- Answer:
(a) Displacement $=\Delta X=X_{2}-X_{1}=-10-0=-10 \mathrm{~cm}$
(b) Distance $=$ All distance travelled $=$ (difference
between $20 \& 0)+($ difference between $20 \&-10)=$ $20+30=50 \mathrm{~cm}$

Displacement - difference between start and end point - (vector)

- Vector and scalor quantities \rightarrow Vector: quantity that has both magnitude and direction e.g. Displacement ($\Delta \mathbf{X}$), velocity, force, acceleration
\rightarrow Scalor: quantity that has magnitude ONLY
e.g mass, distance, temperature, pressure, work, energy ..etc

-50	-40	-30	-20	-10	0	10	20	30

EXERCISES

- 1) An ant starts at $x=20 \mathrm{~cm}$ on a piece of graph paper and walks along the x axis to $x=-20 \mathrm{~cm}$. It then turns around and walks back to $x=-10 \mathrm{~cm}$
Determine (a) the ant's displacement and (b) the total distance traveled
- 2) A Train moves from $x=40 \mathrm{~cm}$ backwards to $x=0 \mathrm{~cm}$, find the (a) displacement and (b) the distance
- Answer of ql
a) $\Delta X=X_{2}-X_{1}=-10-0=-10 \mathrm{~cm}$
b) Distance $=$ All distance travelled $=($ difference between $20 \&-20)+($ difference between -20 \& -10) $=40+10=50 \mathrm{~cm}$
- Answer of q2
a) $\Delta X=x_{2}-x_{1}=0-40=-40 \mathrm{~cm}$
b) distance $=40 \mathrm{~cm}$

conceprs

2-1 Reference Frames and Displacement
2-2 Average Velocity
2-3 Instantaneous Velocity

2.2 AVERACE VELOCITY

- Average velocity $(\overline{\mathrm{v}})=\frac{\Delta x}{\Delta t}$
- Example: A person moved along the x -axis from $(\mathrm{x}=0 \mathrm{~m})$ to $(\mathrm{x}=10$ m) in 2 sec , then he stopped for 6 sec until he decided to return back to ($x=0 \mathrm{~m}$) which took from him 2 sec, calculate:
a) Average velocity along all his pathway
b) Average velocity from $\mathrm{t} \rightarrow 2$
c) Average velocity from t $2 \rightarrow 6$
d) Average velocity from t $6 \rightarrow 8$

- Answers:

a) $(\overline{\mathrm{V}})=\frac{\Delta x}{\Delta t}=\frac{x 2-x 1}{t 2-t 1}=\frac{0-0}{8-0}=0 \mathrm{~m} / \mathrm{s}$
b) $(\overline{\mathrm{V}})=\frac{\Delta x}{\Delta t}=\frac{x 2-x 1}{t 2-t 1}=\frac{10-0}{2-0}=5 \mathrm{~m} / \mathrm{s}$
c) $(\overline{\mathrm{v}})=\frac{\Delta x}{\Delta t}=\frac{x 2-x 1}{t 2-t 1}=\frac{10-10}{6-2}=0 \mathrm{~m} / \mathrm{s}$
d) $(\overline{\mathrm{V}})=\frac{\Delta x}{\Delta t}=\frac{x 2-x 1}{t 2-t 1}=\frac{0-10}{8-6}=-5 \mathrm{~m} / \mathrm{s}$

```
Time (sec)
```

-25	-20	-15	-10	-5	0	5	10	15

2.2 AVERAGE VELOCTTY

- Average speed $(\overline{\mathrm{s}})=\frac{\text { distance travelled }}{\Delta t}$
- Example: A person moved along the x -axis from $(\mathrm{x}=0 \mathrm{~m})$ to $(\mathrm{x}=10$ m) in 2 sec , then he stopped for 6 sec until he decided to return back to ($x=0 \mathrm{~m}$) which took from him 2 sec, calculate:
a) Average speed along all his pathway
b) Average speed from $\mathrm{t} 0 \rightarrow 2$
c) Average speed from $t 2 \rightarrow 6$
d) Average speed from t $6 \rightarrow 8$
- Answers:
a) $(\overline{\mathbf{s}})=\frac{\text { distance travelled }}{\Delta t}=\frac{10+10}{8-0}=2.5 \mathrm{~m} / \mathrm{s}$
b) $(\overline{\mathrm{s}})=\frac{\text { distance travelled }}{\Delta t}=\frac{10}{2-0}=5 \mathrm{~m} / \mathrm{s}$
c) $(\overline{\mathrm{s}})=\frac{\text { distance travelled }}{\Delta t}=\frac{0}{6-2}=0 \mathrm{~m} / \mathrm{s}$
d) $(\overline{\mathbf{s}})=\frac{\text { distance travelled }}{\Delta t}=\frac{10}{8-6}=5 \mathrm{~m} / \mathrm{s}$

Time (sec)

-25	-20	-15	-10	-5	0	5	10	15

2.2 AVERAGE VELOCITY

- We can conclude from the previous two slides :
$|\Delta \mathrm{X}|=\mathrm{d}$ (if there is no change in direction)
|Average velocity| = Average speed (if there is no change in direction)
In general:
$|\Delta \mathbf{X}| \leq \mathrm{d} \& \mid$ Average velocity $\mid \leq$ Average speed

EXAMPLE 2-1 Runner's average velocity. The position of a runner as a function of time is plotted as moving along the x axis of a coordinate system. During a 3.00-s time interval, the runner's position changes from $x_{1}=50.0 \mathrm{~m}$ to $x_{2}=30.5 \mathrm{~m}$, as shown in Fig. 2-7. What is the runner's average velocity? APPROACH We want to find the average velocity, which is the displacement divided by the elapsed time.
SOLUTION The displacement is

$$
\begin{aligned}
\Delta x & =x_{2}-x_{1} \\
& =30.5 \mathrm{~m}-50.0 \mathrm{~m}=-19.5 \mathrm{~m} .
\end{aligned}
$$

The elapsed time, or time interval, is given as $\Delta t=3.00 \mathrm{~s}$. The average velocity (Eq. 2-2) is

$$
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{-19.5 \mathrm{~m}}{3.00 \mathrm{~s}}=-6.50 \mathrm{~m} / \mathrm{s} .
$$

The displacement and average velocity are negative, which tells us that the runner is moving to the left along the x axis, as indicated by the arrow in Fig. 2-7. The runner's average velocity is $6.50 \mathrm{~m} / \mathrm{s}$ to the left.

EXAMPLE 2-2 Distance a cyclist travels. How far can a cyclist travel in 2.5 h along a straight road if her average velocity is $18 \mathrm{~km} / \mathrm{h}$?

APPROACH We want to find the distance traveled, so we solve Eq. 2-2 for Δx. SOLUTION In Eq. 2-2, $\bar{v}=\Delta x / \Delta t$, we multiply both sides by Δt and obtain

$$
\Delta x=\bar{v} \Delta t=(18 \mathrm{~km} / \mathrm{h})(2.5 \mathrm{~h})=45 \mathrm{~km} .
$$

EXAMPLE 2-3 Car changes speed. A car travels at a constant $50 \mathrm{~km} / \mathrm{h}$ for 100 km . It then speeds up to $100 \mathrm{~km} / \mathrm{h}$ and is driven another 100 km . What is the car's average speed for the $200-\mathrm{km}$ trip?
APPROACH At $50 \mathrm{~km} / \mathrm{h}$, the car takes 2.0 h to travel 100 km . At $100 \mathrm{~km} / \mathrm{h}$ it takes only 1.0 h to travel 100 km . We use the defintion of average velocity, Eq. 2-2. SOLUTION Average velocity (Eq. 2-2) is

$$
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{100 \mathrm{~km}+100 \mathrm{~km}}{2.0 \mathrm{~h}+1.0 \mathrm{~h}}=67 \mathrm{~km} / \mathrm{h} .
$$

NOTE Averaging the two speeds, $(50 \mathrm{~km} / \mathrm{h}+100 \mathrm{~km} / \mathrm{h}) / 2=75 \mathrm{~km} / \mathrm{h}$, gives a wrong answer. Can you see why? You must use the definition of \bar{v}, Eq. 2-2.

2-3 INSTANTANEOUS VELOCTTY

- instantaneous velocity at any moment is defined as the average velocity over an infinitesimally short time interval (velocity at any instant of time) (v)
- Notice in these two graphs, they have equal average velocities as a whole, but different spontaneous velocities at different points
- (Spontaneous velocity = average velocity) if the velocity is constant

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}
$$

