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DYNAMICS: NEWTON’S LAWS OF




4 — 7 Solving Problems with Newton’s Laws:
Free-Body Diagrams

4 — 8 Problems Involving Friction, Inclines




| Summary

Newton’s three laws of motion are the basic classical laws
describing motion.

Newton’s first law (the law of inertia) states that if the net
force on an object is zero, an object originally at rest remains
at rest, and an object in motion remains in motion in a straight
line with constant velocity.

Newton’s second law states that the acceleration of an
object is directly proportional to the net force acting on it, and
inversely proportional to its mass:

>F = ma. 4-1)

Newton’s second law is one of the most important and funda-
mental laws in classical physics.

Newton’s third law states that whenever one object exerts
a force on a second object, the second object always exerts a
force on the first object which is equal in magnitude but oppo-
site in direction:

Fag = —Fga (4-2)

where Fg 5 is the force on object B exerted by object A.
The tendency of an object to resist a change in its motion
is called inertia. Mass is a measure of the inertia of an object.

Weight refers to the gravitational force on an object, and is
equal to the product of the object’s mass m and the acceleration
of gravity g:

Fg = mg. (4-3)

Force, which is a vector, can be considered as a push or pull;
or, from Newton’s second law, force can be defined as an action
capable of giving rise to acceleration. The net force on an object
is the vector sum of all forces acting on that object.

When two objects slide over one another, the force of
friction that each object exerts on the other can be written
approximately as Fp = py Fy, where Fy is the normal force
(the force each object exerts on the other perpendicular to their
contact surfaces), and uy is the coefficient of Kkinetic friction. If
the objects are at rest relative to each other, then Fj is just
large enough to hold them at rest and satisfies the inequality
Fy < pg FN, where pg is the coefficient of static friction.

For solving problems involving the forces on one or more
objects, it is essential to draw a free-body diagram for each
object, showing all the forces acting on only that object.
Newton’s second law can be applied to the vector components

for each object.
-/



4—T SOLVING PROBLEMS WITH NEWTON'S
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Newton’s Laws; Free-Body Diagrams

1.

2,

Draw a sketch of the situation, after carefully reading
the Problem at least twice.

Consider only one object (at a time), and draw a
free-body diagram for that object, showing all the
forces acting on that object. Include any unknown
forces that you have to solve for. Do not show any
forces that the chosen object exerts on other objects.

Draw the arrow for each force vector reasonably
accurately for direction and magnitude. Label each
force acting on the object, including forces you must
solve for, according to its source (gravity, person,
friction, and so on).

If several objects are involved, draw a free-body
diagram for each object separately. For each object,
show all the forces acting on that object (and only
forces acting on that object). For each (and every)
force, you must be clear about: on what object that

force acts, and by what object that force is exerted.
Only forces acting on a given object can be included
in XF = ma for that object.

. Newton’s second law involves vectors, and it is usu-

ally important to resolve vectors into components.
Choose x and vy axes in a way that simplifies the
calculation. For example, it often saves work if you
choose one coordinate axis to be in the direction of
the acceleration (if known).

. For each object, apply Newton’s second law to the

x and y components separately. That is, the x compo-
nent of the net force on that object is related to
the x component of that object’s acceleration:
2 F, = ma,, and similarly for the y direction.

. Solve the equation or equations for the unknown(s).

Put in numerical values only at the end, and keep
track of units.




EXAMPLE 4-6 | Weight, normal force, and a box. A friend has given you

a special gift, a box of mass 10.0 kg with a mystery surprise inside. The box is
resting on the smooth (frictionless) horizontal surface of a table (Fig. 4-15a).
(a) Determine the weight of the box and the normal force exerted on it by
the table. (b) Now vour friend pushes down on the box with a force of 40.0 N,
as in Fig. 4-15b. Again determine the normal force exerted on the box by
the table. (c) If vour friend pulls upward on the box with a force of 40.0 N
(Fig. 4-15¢), what now 1s the normal force exerted on the box by the table?

APPROACH The box is at rest on the table, so the net force on the box in each
case 18 zero (Newton's first or second law). The weight of the box has magni-
tude mg in all three cases.

SOLUTION (a) The weight of the box is mg = (10.0kg)(9.80 m/s*) = 98.0 N,
and this force acts downward. The only other force on the box is the normal
force exerted upward on it by the table, as shown in Fig. 4-15a. We chose the
upward direction as the positive y direction; then the net force ZF, on the box
15 ZF, = Fy — mg: the minus sign means mg acts in the negative y direction
(m and g are magnitudes). The box is at rest, so the net force on it must be
zero (Newton’s second law, £F, = ma,. and a, = 0). Thus

ZFy = may
Fy, —mg = 0,
so we have
F, = mg.

The normal force on the box, exerted by the table, 15 98.0 N upward, and has
magnitude equal to the box’s weight.

(b) Your friend is pushing down on the box with a force of 40.0 N. So instead
of only two forces acting on the box, now there are three forces acting on the
box, as shown in Fig. 4-15b. The weight of the box is still mg = 98.0 N. The net
forceis ZF, = Fy — mg — 40.0N, and is equal to zero because the box remains
atrest (a = 0). Newton's second law gives

ZF, = Fy — mg — 400N = 0.
We solve this equation for the normal force:
Fy, = mg + 400N = 980N + 400N = 1380N,

which 15 greater than in (a). The table pushes back with more force when a person
pushes down on the box. The normal force is not always equal to the weight!
(¢) The box’s weight 15 still 98.0 N and acts downward. The force exerted by
your friend and the normal force both act upward (positive direction), as shown
i Fig. 4-15¢c. The box doesn’t move since your friend’s upward force is less
than the weight. The net force, again set to zero in Newton's second law because
a=10,1s

ZF, = Fy — mg + 400N = 0,
0 '

Fy = mg — 400N = 980N — 40.0N = 58.0N.
The table does not push against the full weight of the box because of the upward
force exerted by vour friend.

NOTE The weight of the box (= myg) does not change as a result of vour friend’s

push or pull. Only the normal force 1s affected.
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FIGURE 4-16 Example 4-7. The
box accelerates upward because
Fp > mg.

EXAMPLE 4-7 | Accelerating the box. What happens when a person pulls

upward on the box in Example 4-6¢ with a force equal to, or greater than,
the box’s weight? For example, let F, = 100.0 N (Fig.4-16) rather than the
40.0 N shown in Fig. 4-15c.

APPROACH We can start just as in Example 4-06, but be ready for a surprise.
SOLUTION The net force on the box is

EFJ,. = FN—mg+Fp
= Fy — 98.0N + 100.0N,

and if we set this equal to zero (thinking the acceleration might be zero), we
would get Fy = —2.0N. This is nonsense, since the negative sign implies Fy
points downward, and the table surely cannot pull down on the box (unless
there’s glue on the table). The least Fy can be is zero, which it will be in this case.
What really happens here is that the box accelerates upward (a # 0) because
the net force is not zero. The net force (setting the normal force Fy = 0)1is

SF, = Fp — mg = 1000N — 980N
— 20N

upward. See Fig. 4-16. We apply Newton’s second law and see that the box
moves upward with an acceleration

2F, 20N

YT M T 100ke

= 0.20m/s>.




FIGURE 4-17 Example 4-8. The
acceleration vector is shown in gold
to distinguish it from the red force
vectors.

EXAMPLE 4-8 | Apparent weight loss. A 65-kg woman descends in an

elevator that briefly accelerates at 0.20g downward. She stands on a scale that
reads in kg. (a) During this acceleration, what is her weight and what does
the scale read? (b) What does the scale read when the elevator descends at a
constant speed of 2.0 m/s?

APPROACH Figure 4-17 shows all the forces that act on the woman (and only
those that act on her). The direction of the acceleration is downward, so

we choose the positive direction as down (this is the opposite choice from
Examples 4-6 and 4-7).

SOLUTION (a) From Newton's second law,

2F = ma
mg — Fy = m(0.20g).

We solve for Fy:

Fy = mg — 020mg
= 0.80mg,

and it acts upward. The normal force Fy is the force the scale exerts on the
person. and is equal and opposite to the force she exerts on the scale:
Fy = 0.80mg downward. Her weight (force of gravity on her) is still
mg = (65kg)(9.8m/s”) = 640 N. But the scale, needing to exert a force of
only 0.80mg, will give a reading of 0.80m = 52kg.

(b) Now there is no acceleration, @ = (0, so by Newton’s second law,
mg — Fy = 0 and F, = mg. The scale reads her true mass of 65 kg.

NOTE The scale in (a) gives a reading of 52 kg (as an “apparent mass”), but
her mass doesn’t change as a result of the acceleration: it stays at 65 kg.




EXAMPLE 4-9 | Adding force vectors. Calculate the sum of the two forces

exerted on the boat bv workers A and B in Fig. 4-19a. FIGURE 4-19 Example 4-9: Two
force vectors act on a boat.




FIGURE 4-20 Example 4-10.
Which is the correct free-body
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across frictionless ice?
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CONCEPTUAL EXAMPLE 4-10 | The hockey puck. A hockey puck is

sliding at constant velocity across a flat horizontal ice surface that is assumed
to be frictionless. Which of the sketches in Fig. 4-20 is the correct free-body
diagram for this puck? What would your answer be if the puck slowed down?

RESPONSE Did vou choose (a)? If so, can you answer the guestion: what
exerts the horizontal force labeled F on the puck? If you say that it is the force
needed to maintain the motion, ask yourself: what exerts this force? Remember
that another object must exert any force—and there simply isn’t any possibility
here. Therefore, (a) is wrong. Besides, the force F in Fig. 4-20a would give rise to
an acceleration by Newton’s second law. It is (b) that is correct. No net force
acts on the puck, and the puck slides at constant velocity across the ice.

In the real world, where even smooth ice exerts at least a tiny friction force,
then (c) is the correct answer. The tiny friction force is in the direction opposite
to the motion, and the puck’s velocity decreases, even if very slowly.




EXAMPLE 4-11 | Pulling the mystery box. Suppose a friend asks to examine

the 10.0-kg box you were given (Example 4-6, Fig. 4-15), hoping to guess what

is inside; and you respond, “Sure, pull the box over to you.” She then pulls

the box by the attached cord, as shown in Fig. 4-21a, along the smooth surface

of the table. The magnitude of the force exerted by the person is Fp = 40.0 N,

and it is exerted at a 30.0° angle as shown. Calculate (a) the acceleration of the

box, and (b) the magnitude of the upward force Fy exerted by the table on the
box. Assume that friction can be neglected.

SOLUTION

1. Draw a sketch: The situation is shown in Fig. 4-21a: it shows the box and the
force applied by the person, Fp.

2. Free-body diagram: Figure 4-21b shows the free-body diagram of the box. To
draw it correctly, we show all the forces acting on the box and only the forces
acting on the box. They are: the force of gravity mg: the normal force exerted by
the table Fy: and the force exerted by the person Fp. We are interested only in
translational motion, so we can show the three forces acting at a point, Fig. 4-21c.

3. Choose axes and resolve vectors: We expect the motion to be horizontal, so
we choose the x axis horizontal and the y axis vertical. The pull of 40.0 N has
components

Fpy = (40.0N){cos 30.0°) = (40.0N){0.866) = 346N,
Fpy, = (40.0N)(sin 30.0%) = (40.0N)(0.500) = 20.0N.

In the horizontal (x) direction, Fy and mg have zero components. Thus the
horizontal component of the net force is Fp, .
4. (a) Apply Newton’s second law to get the x component of the acceleration:
Fop = ma,.

5. (a) Solve:
Ky (346N)

7 m T (100kg)
The acceleration of the box is 3.46 m/s” to the right.
(b) Next we want to find Fy.

(b) Apply Newton’s second law to the vertical (y) direction, with upward as
positive:

= 3.46m/s’.

4’

ZF, = may
Fy — mg + Fp, = ma,.
(b) Solve: We have mg = (10.0kg)(9.80 m/s*) = 98.0N and, from point 3

above, Fp}. = 20.0 N. Furthermore, since FP}. << mg, the box does not move
vertically, so a, = 0. Thus

Fy — 980N + 200N = 0,

5.

50

Fe = 780N.

MNOTE F is less than mg: the table does not push against the full weight of the
box because part of the pull exerted by the person is in the upward direction.

Fp=400N

T30.0° ;
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(c)

FIGURE 4-21 (a) Pulling the box,
Example 4-11; (b) is the free-body
diagram for the box, and (c) 1s the
free-body diagram considering all
the forces to act at a point
(translational motion only, which
is what we have here).




FIGURE 4-22 Example 4-12. (a) Two boxes,
mg = ny = Fp A and B, are connected by a cord. A person pulls
L x 12\.9 kg : lQ\.S) kg W/"}/_ horizontally on box A with force Fp = 40.0N.
(400N ! (b) Free-body diagram for box A. (c) Free-body
diagram for box B.

Box B Box A
(a)

EXAMPLE 4-12 | Two boxes connected by a cord. Two boxes, A and B, are

connected by a lightweight cord and are resting on a smooth (frictionless) table.
The boxes have masses of 12.0 kg and 10.0 kg. A horizontal force F; of 40.0 N is
applied to the 10.0-kg box, as shown in Fig. 4-22a. Find (a) the acceleration of
each box, and (b) the tension in the cord connecting the boxes.




@CAUTIDN

For any object, use only
the forces on that object in
calculating X F = ma

SOLUTION (a)We apply XF, = ma, tobox A:

2F, = Fp — Fr = maan. [box A]
For box B, the only horizontal force is Fy, so
2F, = Fr = mgag. [box B]

The boxes are connected, and if the cord remains taut and doesn’t stretch, then
the two boxes will have the same acceleration a. Thus a, = ag = a. We are
given m, = 10.0kg and myz = 12.0kg. We can add the two equations above
to eliminate an unknown (FT) and obtain

(mA 4 mB)ﬂ = FP = FT + FT = Fp
or
Fp 40.0N

= " = 1.82m/s
T A+ mp  220kg m/s

This is what we sought.

() From the equation [or box B above (FT = mpg aB), the tension in the cord is
Fr = mga = (120 kg)(1.82 m/sz) = 21.8N.
Thus, F;r < Fp (= 40.0N), as we expect, since Fy acts to accelerate only my.

Alternate Solution to (a) We would have obtained the same result had we consid-
ered a single system, of mass m, + my., acted on by a net horizontal force equal
to Fp. (The tension forces F; would then be considered internal to the system as
a whole, and summed together would make zero contribution to the net force
on the whole system.)

NOTE It might be tempting to say that the force the person exerts, Fp, acts not
only on box A but also on box B. It doesn’t. Fp acts only on box A. It affects
box B via the tension in the cord, F;, which acts on box B and accelerates it.
(You could look at it this way: Fp < Fp because Fp accelerates both boxes
whereas F; only accelerates box B.)




EXAMPLE 4-13 | Elevator and counterweight (Atwood machine). A system

of two objects suspended over a pulley by a flexible cable, as shown in Fig. 4-23a,
is sometimes referred to as an Arwood machine. Consider the real-life appli-
cation of an elevator (m) and its counterweight (m¢). To minimize the work
done by the motor to raise and lower the elevator safely, m and m are made
similar in mass. We leave the motor out of the system for this calculation, and
assume that the cable’s mass is negligible and that the mass of the pulley, as well
as any friction, is small and ignorable. These assumptions ensure that the
tension Fy in the cable has the same magnitude on both sides of the pulley. Let the
mass of the counterweight be m = 1000 kg. Assume the mass of the empty
elevator is 850 kg, and its mass when carrying four passengers is mg = 1150 kg.
For the latter case (mE = 1150 kg), calculate (a) the acceleration of the
elevator and (b) the tension in the cable.

Elevator ' |

car ——

mg =

1150 kg

meg

(b)

ac

Counterweight
me = 1000 kg




SOLUTION (a) To find F; as well as the acceleration a, we apply Newton’s
second law, ZF = ma, to each object. We take upward as the positive y direc-
tion for both objects. With this choice of axes, a- = a because m accelerates

upward, and ap = —a because m accelerates downward. Thus
Fp — mgg = mgag = —mga
Fy — meg = mea- = +mea.

We can subtract the first equation from the second to get
(mg = me)g = (me + me)a,
where a is now the only unknown. We solve this for a:

_me—mc _ 1150kg — 1000kg . 0 _ oo
“° mg + mc:g ~ 1150kg + lﬂD[]kg'g = 0070g = 0.68m/s".

The elevator (m;.) accelerates downward (and the counterweight m upward) at
a — 0.070g — 0.68 m/s".

(b) The tension in the cable F; can be obtained from either of the two
> F = ma equations at the start of our solution, setting @ = 0.070g = 0.68 m/s":

Fr = mgg — mga = mg(g — a)
= 1150kg (9.80m/s* — 0.68 m/s?)

10,500 N,
or
Fy = mcg + meca = me(g + a)
= 1000 kg (9.8{] m/s* + 0.68 rnfsz] = 10,500 N,
which are consistent. As predicted, our result lies between 9800 N and 11,300 N.

NOTE We can check our equation for the acceleration a in this Example by
noting that if the masses were equal (mg = m¢), then our equation above for a
would give a = 0, as we should expect. Also, if one of the masses is zero (say,
me = 0), then the other mass (mg # 0) would be predicted by our equation to
accelerate at a = g, again as expected.




CONCEPTUAL EXAMPLE 4-14 | The advantage of a pulley. A mover is

FIGURE 4-24 Example 4-14.

trying to lift a piano (slowly) up to a second-story apartment (Fig. 4-24). He is
using a rope looped over two pulleys as shown. What force must he exert on the
rope to slowly lift the piano’s 1600-N weight?

RESPONSE The magnitude of the tension force F; within the rope is the same
at any point along the rope if we assume we can ignore its mass. First notice the
forces acting on the lower pulley at the piano. The weight of the piano (= mg)
pulls down on the pulley. The tension in the rope, looped through this
pulley, pulls up fwice, once on each side of the pulley. Let us apply Newton’s
second law to the pulley—piano combination (of mass m), choosing the upward
direction as positive:

2Fy — mg = ma.

To move the piano with constant speed (set @ = 0 in this equation) thus requires
a tension in the rope, and hence a pull on the rope, of F; = mg/2. The piano
mover can exert a force equal to half the piano’s weight.

NOTE We say the pulley has given a mechanical advantage of 2, since without

the pulley the mover would have to exert twice the force.




X)pHysics APPLIED

EXAMPLE 4-15 | Accelerometer. A small mass m hangs from a thin string

Accelerometer

FIGURE 4-25 Example 4-15.

and can swing like a pendulum. You attach it above the window of your car
as shown in Fig. 4-25a. When the car is at rest, the string hangs vertically.
What angle 6 does the string make (a) when the car accelerates at a constant
a = 1.20 m/s%, and (b) when the car moves at constant velocity, » = 90 km/h?
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FIGURE 4-26 An object moving to
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in contact are assumed smooth, but
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FIGURE 4-28 Example 4-16.
Magnitude of the force of friction as
a function of the external force
applied to an object initially at rest.
As the applied force is increased in
magnitude, the force of static friction
increases in proportion until the
applied force equals ug Fy . If the
applied force increases further, the
object will begin to move, and the
friction force drops to a roughly
constant value characteristic of kinetic
friction.
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NOTE THAT THE COEFFICIENT OF FRICTIONS
DOESN'T DEPEND ON THE SURTACE AREA

TABLE 4-2 Coefficients of Friction'

Coefficient of Coefficient of
Surfaces Static Friction, pu Kinetic Friction, u,
Wood on wood 0.4 0.2
Ice on ice 0.1 0.03
Metal on metal (lubricated) 0.15 0.07
Steel on steel (unlubricated) 0.7 0.6
Rubber on dry concrete 1.0 0.8
Rubber on wet concrete 0.7 0.5
Rubber on other solid surfaces 1-4 1
Teflon® on Teflon in air 0.04 0.04
Teflon on steel in air 0.04 0.04
Lubricated ball bearings <0.01 <0.01
Synovial joints (in human limbs) 0.01 0.01

" Values are approximate and intended only as a guide.




CONCEPTUAL EXAMPLE 4-17 | A box against a wall. You can hold a box
against a rough wall (Fig. 4-29) and prevent it from slipping down by pressing Fp, I‘

hard horizontally. How does the application of a horizontal force keep an
object from moving vertically?

RESPONSE This won’t work well if the wall is slippery. You need friction. P Fy
Even then, if you don’t press hard enough, the box will slip. The horizontal —
force you apply produces a normal force on the box exerted by the wall (the

net force horizontally is zero since the box doesn’t move horizontally). The force i
of gravity mg, acting downward on the box, can now be balanced by an upward e
static friction force whose maximum magnitude is proportional to the normal

force. The harder you push, the greater Fy is and the greater F; can be. If you pgieyRE 4-29 Example 4-17.
don’t press hard enough, then mg > p, Fy and the box begins to slide down.

®



EXAMPLE 4-16 | Friction: static and kinetic. Our 10.0-kg mystery box rests

Fy
Fy
——
F‘fr
__—
mg
FIGURE 4-27

on a horizontal floor. The coefficient of static friction is u, = 0.40 and the
coefficient of kinetic friction is w, = 0.30. Determine the force of friction, F,,
acling on the box il a horizontal applied [orce F, 1s exerted on it of magnitude:

(@) 0, (b) 10N, (c) 20N, (d) 38 N, and () 40 N.

APPROACH We don’t know, right off, if we are dealing with static friction or
kinetic friction, nor if the box remains at rest or accelerates. We need to draw a
free-body diagram, and then determine in each case whether or not the box will
move: the box starts moving if F, is greater than the maximum static friction
force (Newton’s second law). The forces on the box are gravity mg, the normal
force exerted by the floor Fy, the horizontal applied force F, , and the fric-
tion force F;,, as shown in Fig. 4-27.




APPROACH We don’t know, right off, if we are dealing with static friction or
kinetic friction, nor if the box remains at rest or accelerates. We need to draw a
free-body diagram, and then determine in each case whether or not the box will
move: the box starts moving if F, is greater than the maximum static friction
force (Newton’s second law). The forces on the box are gravity mg, the normal
force exerted by the floor Fy, the horizontal applied force F,, and the fric-
tion force Fy,, as shown in Fig. 4-27.

SOLUTION The free-body diagram of the box is shown in Fig. 4-27. In the vertical
direction there is no motion, so Newton'’s second law in the vertical direction
gives XFy, = may, = 0, which tellsus Fy — mg = 0. Hence the normal force is

Fy = mg = (10.0kg)(9.80m/s*) = 98.0N.
(a) Because F, = 0 in this first case, the box doesn’t move, and F;, = 0.
(b) The force of static friction will oppose any applied force up to a maximum of
usFy = (0.40)(98.0N) = 39N.
When the applied force is F, = 10 N, the box will not move. Newton’s second
law gives XF, = F, — F;; = 0, so F;, = 10N.
(¢) An applied force of 20N is also not sufficient to move the box. Thus
Fi; = 20N to balance the applied force.
(d) The applied force of 38 N is still not quite large enough to move the box:
so the friction force has now increased to 38 N to keep the box at rest.
(e) A force of 40 N will start the box moving since it exceeds the maximum force
of static friction, ugFy — (0.40)(98 N) — 39 N. Instead of static friction, we now
have kinetic friction, and its magnitude is
Fe = ey = (030)(98.0N) = 29N.
There i1s now a net (horizontal) force on the box of magnitude
F =40N — 29N = 11 N, so the box will accelerate at a rate

_ZF 1IN 5
ay = — - = 10.0 kg = 1.1m/s
as long as the applied force is 40 N. Figure 4-28 shows a graph that summarizes

this Example.




EXAMPLE 4-18 | Pulling against friction. A 10.0-kg box is pulled along a

horizontal surface by a force F; of 40.0 N applied at a 30.0° angle above hori-
zontal. This is like Example 4-11 except now there is friction, and we assume a
coefficient of kinetic friction of 0.30. Calculate the acceleration.

APPROACH The free-body diagram is shown in Fig. 4-30. It is much like that
in Fig. 4-21b, but with one more force, friction.

SOLUTION The calculation for the vertical (y) direction is just the same
as in Example 4-11b, mg = (10.0kg)(9.80m/s*) = 980N and Fp, =
(40.0 N)(sin 30.0°) = 20.0 N. With y positive upward and a, = 0, we have

Fy —mg + Fy, = ma,
Fy — 980N + 200N = 0,

so the normal force is Fy = 78.0 N. Now we apply Newton’s second law for the
horizontal (x) direction (positive to the right), and include the friction force:

Fp_r - Ffr = max.

The friction force is kinetic friction as long as F;, = wy Fy is less than Fp, =
(40.0N) cos 30.0° = 34.6 N, which it is:

Fy — meFy — (030)(78.0N) = 23.4N.
Hence the box does accelerate:

B o, — F _ 346N — 234N {1m/ 2
G = T T 10.0 kg -
In the absence of friction, as we saw in Example 4-11, the acceleration would be

much greater than this.

NOTE Our final answer has only two significant figures because our least sig-
nificant input value (u; = 0.30) has two.

FIGURE 4-30 Example 4-18.
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I EXAMPLE 4-20 | Two boxes and a pulley. In Fig. 4-32a, two boxes are
connected by a cord running over a pulley. The coefficient of kinetic friction
between box A and the table is 0.20. We ignore the mass of the cord and pulley
and any friction in the pulley, which means we can assume that a force applied
to one end of the cord will have the same magnitude at the other end. We wish
to find the acceleration, a, of the system, which will have the same magnitude
for both boxes assuming the cord doesn’t stretch. As box B moves down, box A
moves to the right.

FIGURE 4-32 Example 4-20.
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APPROACH The free-body diagrams for each box are shown in Figs. 4-32b and c.
The forces on box A are the pulling force of the cord F;, gravity m, g, the nor-
mal force exerted by the table Fy, and a friction force exerted by the table Fj;
the forces on box B are gravity my g, and the cord pulling up, F;.

SOLUTION Box A does not move vertically, so Newton’s second law tells us
the normal force just balances the weight,

Fy = myg = (5.0kg)(9.8m/s?) = 49N.
In the horizontal direction, there are two forces on box A (Fig. 4-32b): F;, the
tension in the cord (whose value we don’t know), and the force of friction

F, = wmFy = (0.20)(49N) = 9.8N.
The horizontal acceleration (box A) is what we wish to find; we use Newton'’s

second law in the x direction, 2 F,, = ma d,, which becomes (taking the positive
direction to the right and setting a,, = a):

EFAX — FT = Ffr = Mya. [bOXA]
Next consider box B. The force of gravity mzg = (2.0kg)(9.8 m/s*) = 19.6N

pulls downward; and the cord pulls upward with a force F;. So we can write
Newton’s second law for box B (taking the downward direction as positive):

EFBY — mBg = FT = Mgd. [box B]
[Notice that if a # 0, then Fy is not equal to my g.]

We have two unknowns, a and F;, and we also have two equations. We solve
the box A equation for Fi:
Fr = Fx + mpa,
and substitute this into the box B equation:
mgg — Fgp — mpa = mga.
Now we solve for a and put in numerical values:
g s TEEY— Fr _ 196N — 98N _ 14m/s,
my + mg 50kg + 2.0kg
which is the acceleration of box A to the right, and of box B down.
If we wish, we can calculate F; using the third equation up from here:
Fp = F; + mya = 98N + (5.0kg)(1.4m/s?) = 17N.
NOTE Box B is not in free fall. It does not fall at a = g because an additional
force, Fr, is acting upward on it.




EXAMPLE 4-21 | The skier. The skier in Fig. 4-34a has begun descending the

307 slope. If the coefficient of kinetic friction is 0.10, what is her acceleration?

APPROACH We choose the x axis along the slope, positive downslope in the
direction of the skier's motion. The v axis is perpendicular to the surface. The
forces acting on the skier are gravity, F; = mg, which points vertically down-
ward (not perpendicular to the slope). and the two forces exerted on her skis by
the snow—the normal force perpendicular to the snowy slope (not vertical), and
the friction force parallel to the surface. These three forces are shown acting
at one point in Fig. 4-34b, which is our free-body diagram for the skier.

SOLUTION We have to resolve only one vector into components, the weight Fg ,
and its components are shown as dashed lines in Fig. 4-34c. To be general, we
use # rather than 30° for now. We use the definitions of sine (“side opposite™)
and cosine (“side adjacent™) to obtain the components:

Fgy = mgsind,

Fgy = —mgcos@
where Fg, is in the negative y direction. To calculate the skier’s acceleration down
the hill, a, , we apply Newton's second law to the x direction:

ZF, = ma,

mgsin® — p Fy = ma,
where the two forces are the x component of the gravity force (+x direction)
and the friction force ( —x direction). We want to find the value of a, . but we
don’t yet know Fy in the last equation. Let’s see if we can get Fy from the
y component of Newton's second law:

ZF, = ma,

Fy — mg cosf = ma, = 0
where we set ay = 0 because there is no motion in the y direction (perpendic-
ular to the slope). Thus we can solve for Fy:

Fy = mgcos@
and we can substitute this into our equation above for ma,

mgsinf — p(mgcosf) = ma,.
There is an m in each term which can be canceled out. Thus (setting # = 30° and
e = 0.10):

a, = gsin30® — p, gcos30°
0.50g — (0.10)(0.866)g = 0.41g.
The skier’s acceleration is 0.41 times the acceleration of gravity, which in numbers’
is a = (0.41)(9.8m/s*) = 4.0m/s".
NOTE The mass canceled out, so we have the useful conclusion that the accelera-
tion doesn't depend on the mass. That such a cancellation sometimes occurs, and

thus may give a useful conclusion as well as saving calculation, is a big advantage
of working with the algebraic equations and putting in the numbers only at the end.




