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= Work = F*d*cos 0

= KE :%mv2

« W .= AKE =%mv22 —%mvlz




b—4 POTENTIAL ENERGY

= potential energy: the energy associated with forces that depend on the position or
configuration of an object (or objects) relative to the surroundings.

= Perhaps the most common example of potential energy is gravitational potential energy: If
you raise an object to an “h” height above a ground and then release it, it will fall towards
the ground, this shows that this object possessed energy when it was raised, which is
represented by
U = mgh (Note that mg = gravitational force)
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b—4 POTENTIAL ENERGY
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FIGURE 6-11 A person exerts an
upward force F.y = mg tolifta
brick from y, to y,.

Let us seek the form for the gravitational potential energy of an object near
the surface of the Earth. For an object of mass m to be lifted vertically, an upward
force at least equal to its weight, mg, must be exerted on it, say by a person’s
hand. To lift the object without acceleration, the person exerts an “external
force” F. = mg. If it is raised a vertical height A, from position y, to y, in
Fig. 6-11 (upward direction chosen positive), a person does work equal to the
product of the “external” force she exerts, F.y = mg upward, multiplied by the
vertical displacement /4. That is,

Weyt = Fexdcos0° = mgh
= mg(y, = »). (6-5a)
Gravity is also acting on the object as it moves from y, to y,, and does work on the
object equal to

W,

; = Fgdcos® = mghcos180°,
where 8 = 180° because F;; and d point in opposite directions. So
Ws = —mgh

= —mg(y, — n). (6-5b)
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APE = work done
by net external force
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Next, if we allow the object to start from rest at y, and fall freely under the
action of gravity, it acquires a velocity given by v* = 2gh (Eq.2-11c) after falling a
height 4. It then has kinetic energy smv® = ym(2gh) = mgh, and if it strikes a
stake, it can do work on the stake equal to mgh (Section 6-3).

Thus, to raise an object of mass m to a height h requires an amount of work
equal to mgh (Eq. 6-5a). And once at height &, the object has the ability to do an
amount of work equal to mgh. We can say that the work done in lifting the object
has been stored as gravitational potential energy.

We therefore define the gravitational potential energy of an object, due to
Earth’s gravity, as the product of the object’s weight mg and its height y above
some reference level (such as the ground):

PE; = mgy. (6-6)

The higher an object is above the ground, the more gravitational potential energy
it has. We combine Eq. 6—5a with Eq. 6-6:

Wext = mg(yZ - yl)
Wey = PE, — PE; = APEg. (6-7a)

That is, the change in potential energy when an object moves from a height y, toa
height y, is equal to the work done by a net external force to move the object
from position 1 to position 2 without acceleration.

Equivalently, we can define the change in gravitational potential energy, APEg;,
in terms of the work done by gravity itself. Starting from Eq. 6-5b, we obtain

We = _mg(J’z - }’1)
Ws = —(PE, — PE;) = —APEg
or
APE; = —W;. (6=7b)
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EXAMPLE 6-6 | Potential energy changes for a roller coaster. A 1000-kg

roller-coaster car moves from point 1, Fig. 6-12, to point 2 and then to point 3.
(a) What is the gravitational potential energy at points 2 and 3 relative to
point 1? That is, take y = 0 at point 1. (b) What is the change in potential
energy when the car goes from point 2 to point 37 (c¢) Repeat parts (a) and (b),
but take the reference point (y = 0) to be at point 3.

APPROACH We are interested in the potential energy of the car—Earth system.
We take upward as the positive y direction, and use the definition of gravitational
potential energy to calculate the potential energy.

SOLUTION (a) We measure heights from point 1 (y, = 0), which means initially
that the gravitational potential energy is zero. At point 2, where y, = 10m,

PE, = mgy, = (1000kg)(9.8m/s?)(10m) = 9.8 x 10°J.
At point 3, y; = —15m, since point 3 is below point 1. Therefore,
PE; = mgy; = (1000kg)(9.8m/s°)(—=15m) = —1.5 x 10°J.
(b) In going from point 2 to point 3, the potential energy change I[PE final — PEinmm) 18
PE; — PE, = (=15 % 10°]) = (9.8 X 10*J) = =25 X 10°].

The gravitational potential energy decreases by 2.5 X 10° J.
(c)Nowweset y; = 0. Then y; = +15 m at point 1, so the potential energy initially

° pE, = (1000kg)(9.8m/s*)(15m) = 1.5 x 10°J.
At point 2, y; = 25 m, so thc potential cnergy is
PE; = 2.5 X 10°].
Atpoint 3, y; = 0, so the potential energy is zero. The change in potential energy
going from point 2 to point 3 is

PE; — PE, = 0 =25 % 10°] = =25 x 10°],

which is the same as in part (b).

NOTE Work done by gravity depends only on the vertical height, so changes in
gravitational potential energy do not depend on the path taken.

A I5m

FIGURE 6-12 Example 6-6.




b—4 POTENTIAL ENERGY

Potential Energy Defined in General

There are other kinds of potential energy besides gravitational. Each form of
potential energy is associated with a particular force, and can be defined analo-
gously to gravitational potential energy. In general, the change in potential energy
associated with a particular force is equal to the negative of the work done by
that force when the object is moved from one point to a second point (as in Eq. 6-7b
for gravity). Alternatively, we can define the change in potential energy as the
work required of an external force to move the object without acceleration between
the two points, as in Eq. 6-7a.




b—5 CONSERVATIVE AND NON-CONSERVATIVE
FORCES

= Conservative force: gﬂ).u)l\ 3 8 )i M\.ﬁ)@ﬁ\ Bjﬂ\ Jia L e vﬂ\.'&)j L MJM\ BJ:\AJM 29 dndlall 3 4 Jia ddadladl) '6)35\
1) The work done by a conservative force does not depend on the path
2) The work of a conservative force in a closed path = zero




6—5 CONSERVATIVE AND NON-CONSERVATIVE FORCES

= Non-conservative force: = You do more work on the green path because the distance
work depends on the pathway / is greater and, unlike the gravitational force, the pushing
work in a closed pathway # 0 force is in the direction of motion at each point.
Sm
Sm
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6—5 CONSERVATIVE AND NON-CONSERVATIVE
FORCES
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EXERCISE E An object acted on by a constant force ' moves from point 1 to point 2
and back again. The work done by the force F in this round trip 1s 60 J. Can you deter-
mine from this information if Fis a conservative or nonconservative force?




Work-Energy Extended

We can extend the work-energy principle (discussed in Section 6-3) to include
potential energy. Suppose several forces act on an object which can undergo
translational motion. And suppose only some of these forces are conservative.
We write the total (net) work W,., as a sum of the work done by conservative
forces, W(-, and the work done by nonconservative forces, Wy:

Waet = We + Wye.

Then, from the work-energy principle, Eq. 6—4, we have
W.i = AKE
We + Wye = AKE
where AKE = KE, — KE;. Then
Wane = AKE — We.

Work done by a conservative force can be written in terms of potential energy,
as we saw in Eq. 6-7b for gravitational potential energy:

W- = —APE.
We combine these last two equations:
Wne = AKE + APE. (6-10)

Thus, the work Wyc done by the nonconservative forces acting on an object is
equal to the total change in kinetic and potential energies.

It must be emphasized that all the forces acting on an object must be included
in Eq. 6-10, either in the potential energy term on the right (if it is a conserva-
tive force), or in the work term on the left (but not in both!).




b—6 MECHANICAL ENERGY AND ITS CONSERVATION

If we can ignore friction and other nonconservative forces, or if only conservative
forces do work on a system, we arrive at a particularly simple and beautiful rela-
tion involving energy.

When no nonconservative forces do work, then Wy = 0 in the general form
of the work-energy principle (Eq. 6-10). Then we have

A _ conservative 11. . .
Ake + Are = 0 forces only (6-11a) If only conservative forces do work, the total mechanical energy of a system | CONSERVATION OF
or ‘ neither increases nor decreases in any process. It stays constant—it is conserved, | VECHANICAL ENERGY
_ conservative
(ke, — kE;) + (PE, — PE;) = 0. [ forces only j| (6-11b)

We now define a quantity £, called the total mechanical energy of our system, as
the sum of the kinetic and potential energies at any moment:

E = KE + PE.
I
Now we can rewrite Eq.6-11b as E = KE + PE = EF‘H'UE + mgy
ey + By = KB+ P, |comervtive] (612 T iz -
| CONSERVATION OF | o | smvy + mgy, = smvy; + mgy,. [gravity only]
HECTARAL B Fy = E = constant | comservative | (6-120)

Equations 6-12 express a useful and profound principle regarding the total
mechanical energy of a system—namely, that it is a conserved quantity. The total
mechanical energy £ remains constant as long as no nonconservative forces do
work: KE + PE at some initial time 1 is equal to the KE + PE at any later time 2.

€



b—6 MECHANICAL ENERGY AND ITS CONSERVATION

EXAMPLE 6-7 | Falling rock. If the initial height of the rock in Fig. 6-17 is
y; = h = 3.0m, calculate the rock’s velocity when it has fallen to 1.0 m above

the ground. all potential = KB
energy
APPROACH We apply the principle of conservation of mechanical energy, o8 ) ="
Eq. 6-13, with only gravity acting on the rock. We choose the ground as our
reference level (y = 0).
. .. . PE KE
SOLUTION At the moment of release (point 1) the rock’s position is L_,
y; = 3.0m and itis at rest: v; = 0. We want to find v, when the rock is at posi- -
tion y, = 1.0 m. Equation 6-13 gives S )
Y2 . - Bq g half KE B PE KE
12 _ 1,2 |
ymvy + mgy, = 3mv; + mgy,. |
,’_,l
The m’s cancel out and v, = 0, so — & —
. all kinetic ~ “2~
gy =303 t gy energy
. . FIGURE 6-17 The rock’s potential
SOIVlng for U, WE find energy changes to kinetic energy as
it falls. Note bar graphs representing
v, = '\/Zg(yl — yz) = \/2(9.8 m/SZ)[ (3.0 l'l‘l) — (1.0 m)] = 6.3 l'l‘l/S. potential energy pE and kinetic
energy KE for the three different
The rock’s velocity 1.0 m above the ground is 6.3 m/s downward. positions.

NOTE The velocity of the rock is independent of the rock’s mass.
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b—6 MECHANICAL ENERGY AND ITS CONSERVATION

EXAMPLE 6-8 | Roller-coaster car speed using energy conservation.

Assuming the height of the hill in Fig. 6-18 is 40 m, and the roller-coaster car
starts from rest at the top, calculate (a) the speed of the roller-coaster car at
the bottom of the hill, and (b) at what height it will have half this speed. Take
y = 0 at the bottom of the hill.

APPROACH We use conservation of mechanical energy. We choose point 1 to
be where the car starts from rest (v; = 0) at the top of the hill (y;, = 40m). In
part (a), point 2 is the bottom of the hill, which we choose as our reference level,
so y, = 0. In part (D) we let y, be the unknown.

SOLUTION (a) We use Eq. 6-13 with v»; = 0 and y, = 0, which gives

mgy, = %mvﬁ
or
v, = V2gy

= \/2(9.8m/s?)(40m) = 28m/s.
(b) Now y, will be an unknown. We again use conservation of energy,
ymvi + mgy, = ymvy + mgy,.

but now v, = (28 m/s) = 14 m/s and v, = 0. Solving for the unknown y, gives

2 14 m/s)?
yzzyl__2=40m—(, )2=3Um
2g 2(9.8 m/s%)
That is, the car has a speed of 14 m/s when it is 30 vertical meters above the lowest
point, both when descending the left-hand hill and when ascending the right-hand

hill.

FIGURE 6-18 A roller-coaster car
moving without friction illustrates
the conservation of mechanical
energy.
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CONCEPTUAL EXAMPLE 6-9 | Speeds on two water slides. Two water
slides at a pool are shaped differently, but start at the same height 4 (Fig. 6-19).
Two riders start from rest at the same time on different slides. (@) Which rider, Paul
or Corinne, is traveling faster at the bottom? (b) Which rider makes it to the
bottom first? Ignore friction and assume both slides have the same path length.

RESPONSE (a) Each rider’s initial potential energy mgh gets transformed to
kinetic energy, so the speed v at the bottom is obtained from jmv> = mgh. The
mass cancels and so the speed will be the same, regardless of the mass of the rider.
Since they descend the same vertical height, they will finish with the same speed.
(b) Note that Corinne is consistently at a lower elevation than Paul at any instant,
until the end. This means she has converted her potential energy to kinetic energy
earlier. Consequently, she is traveling faster than Paul for the whole trip, and
because the distance is the same, Corinne gets to the bottom first.

Corinne
¥ .

X

FIGURE 6-19 Example 6-9.

PE KE
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6—9 ENERGY CONSERVATION WITH DISSIPETIVE FORCES: SOLVING PROBLEMS

Wxe = AKE + APE,

where Wy is the work done by nonconservative forces such as friction. Consider
an object, such as a roller-coaster car, as a particle moving under gravity with
nonconservative forces like friction acting on it. When the object moves from some
point 1 to another point 2, then

Wxe = KE, — KE; + PE, — PE;.
We can rewrite this as
KE, + PE; + Wye = KE, + PE,. (6-15)

For the case of friction, Wy = — F;; d, where d is the distance over which the friction
(assumed constant) acts as the object moves from point 1 to point 2. (F and d are
in opposite directions, hence the minus sign from cos 180° = —1 in Eq. 6-1.)

With ke = 3 mv?> and PE = mgy, Eq.6-15 with Wyc = —F;,d becomes

ity and
smv} + mgy, — Fpd = Smvl + mgy,. [ fr%(r:?i‘(glnya?:iling] (6-16a)

That is, the initial mechanical energy is reduced by the amount F; d. We could
also write this equation as

Imv? t mgy, = Tmv}+ mgy, + Fd gravity and
or friction | (6-16b) :‘
KE, + PE, = KE, + PE, + Fd, acting




40 m

y=0
FIGURE 6-27 Example 6-12.
Because of friction, a roller-coaster
car does not reach the original height
on the second hill. (Not to scale.)

EXAMPLE 6-12 | ESTIMATE | Friction on the roller-coaster car. The

roller-coaster car in Example 6-8 reaches a vertical height of only 25 m on the
second hill, where it slows to a momentary stop, Fig. 0—27. It traveled a total
distance of 400 m. Determine the thermal energy produced and estimate the
average friction force (assume it is roughly constant) on the car, whose mass is
1000 kg.

APPROACH We explicitly follow the Problem Solving Strategy above.

SOLUTION
1. Draw a picture. Scc Fig. 6-27.

2. The system. The system is the roller-coaster car and the Earth (which exerts
the gravitational force). The forces acting on the car are gravity and friction.
(The normal force also acts on the car, but does no work, so it does not affect
the energy.) Gravity is accounted for as potential energy, and friction as
aterm Fi d.

3. Choose initial and final positions. We take point 1 to be the instant when the
car started coasting (at the top of the first hill), and point 2 to be the instant
it stopped at a height of 25 m up the second hill.

4. Choose a reference frame. We choose the lowest point in the motion to be
y = 0 for the gravitational potential energy.

5. Is mechanical energy conserved? No. Friction is present.

6. Apply conservation of energy. There is friction acting on the car, so we use
conservation of energy in the form of Eq. 6-16b, with »; = 0, y = 40m,
v, =0, v, =25m, and d = 400 m. Thus

0 + (1000kg)(9.8m/s?)(40m) = 0 + (1000kg)(9.8 m/s?)(25m) + Fd.

7. Solve. We solve the above equation for F, d, the energy dissipated to thermal
energy:

Fpd = mgAh = (1000kg)(9.8m/s*)(40m — 25m) = 147,000 J.
The friction force, which acts over a distance of 400 m, averages out to be
F. = (].4? x 10° J)M{](}m = 370 N.

NOTE This result is only a rough average: the friction force at various points
depends on the normal force, which varies with slope.
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6—10 POWER

Power is defined as the rate at which work is done. Average power equals the
work done divided by the time to do it. Power can also be defined as the rate at
which energy is transformed. Thus

— work energy transformed

P = - - . (6-17
average power r— ", ( )

The power rating of an engine refers to how much chemical or electrical energy
can be transformed into mechanical energy per unit time. In SI units, power is meas-
ured in joules per second, and this unit is given a special name, the watt (W):
1W = 1J]/s. We are most familiar with the watt for electrical devices, such as
the rate at which an electric lightbulb or heater changes electric energy into light
or thermal energy. But the watt is used for other types of energy transformations
as well.
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FIGURE 6-29 Example 6-14.
Calculation of power needed for a
car to climb a hill.

EXAMPLE 6-14 | Power needs of a car. Calculate the power required of a

1400-kg car under the following circumstances: (a) the car climbs a 10° hill
(a fairly steep hill) at a steady 80 km/h; and (b) the car accelerates along a level
road from 90 to 110 km/h in 6.0 s to pass another car. Assume the average
retarding force on the caris Fg = 700 N throughout. See Fig. 6-29.

APPROACH First we must be careful not to confuse Fg, which is due to air
resistance and friction that retards the motion, with the force F needed to accel-
erate the car, which is the frictional force exerted by the road on the tires—the
reaction to the motor-driven tires pushing against the road. We must determine
the magnitude of the force F before calculating the power.




We mentioned in Example 6—14 that only part of the energy output of a car
engine reaches the wheels. Not only is some energy wasted in getting from the
engine to the wheels, in the engine itself most of the input energy (from the burning
of gasoline or other fuel) does not do useful work. An important characteristic of
all engines is their overall efficiency e, defined as the ratio of the useful power
output of the engine, P, , to the power input, P, (provided by burning of gaso-
line, for example):

Fou

F

The efficiency is always less than 1.0 because no engine can create energy, and
no engine can even transform energy from one form to another without some
energy going to friction, thermal energy, and other nonuseful forms of energy.
For example, an automobile engine converts chemical energy released in the burn-
ing of gasoline into mechanical energy that moves the pistons and eventually the
wheels. But nearly 85% of the input energy is “wasted” as thermal energy that
goes into the cooling system or out the exhaust pipe, plus friction in the moving
parts. Thus car engines are roughly only about 15% efficient. We will discuss
efficiency in more detail in Chapter 15.

e =

SOLUTION (a) To move at a steady speed up the hill, the car must, by New-
ton’s second law, exert a force F equal to the sum of the retarding force, 700 N,
and the component of gravity parallel to the hill, mg sin 10°, Fig. 6-29. Thus

F = 700N + mgsin10°
= 700N + (1400 kg)(9.80 m/s?)(0.174) = 3100 N.

Since » = 80km/h = 22m/s' and is parallel to F, then (Eq. 6—18) the power is
P = Fv = (3100N)(22m/s) = 6.8 X 10'W = 68kW = 91 hp.

(b) The car accelerates from 25.0 m/s to 30.6 m/s (90 to 110 km/h) on the flat.
The car must exert a force that overcomes the 700-N retarding force plus that
required to give it the acceleration

(30.6 m/s — 25.0m/s)
6.0s

We apply Newton’s second law with x being the horizontal direction of motion
(no component of gravity):

SF, = F — Fy.

a, = = 0.93m/s%

ma, =
We solve for the force required, F:
F = mda + -FR

= (1400kg)(0.93m/s?) + 700N = 1300N + 700N = 2000 N.

Since P = Fu, the required power increases with speed and the motor must be
able to provide a maximum power output in this case of

P = (2000N)(30.6m/s) = 6.1 X 10‘'W = 61kW = 82hp.

NOTE Even taking into account the fact that only 60 to 80% of the engine’s
power output reaches the wheels, it is clear from these calculations that an engine
of 75 to 100 kW (100 to 130 hp) is adequate from a practical point of view.




