Chapter (7)
 Confidence intervals

Sheet (1)

Q1 The lifetime (age) in hours of a random sample of one of the batteries produced in Jordan gave the following summary:

Sample size	Sample average	Sample standard deviation
$\mathbf{N}=9$	$\bar{X}=95$	$\mathbf{S}=3$

A $\mathbf{9 9 \%}$ confidence interval for the population variance $\boldsymbol{\sigma}^{\mathbf{2}}$ is:
A) $(1.09,17.86)$
B) $(1.09,6.61)$
C) $(3.28,53.57)$
D) $(1.89,6.61)$
E) $(1.81,7.32)$
$1-\alpha=0.99 \rightarrow \alpha=0.01 \rightarrow \frac{\alpha}{2}=0.005,1-0.05=0.995$
$X_{0.005}^{2}(8)=21.955 \quad \& \quad X_{0.995}^{2}(8)=1.344$
$\left(\frac{(\mathrm{n}-1) \mathrm{S}^{2}}{\mathrm{X}_{\alpha / 2}^{2}}, \frac{(\mathrm{n}-1) \mathrm{S}^{2}}{\mathrm{X}_{1-\alpha / 2}^{2}}\right)=\left(\frac{8 * 9}{21.955}, \frac{8 * 9}{1.344}\right)=(3.28,53.57) \rightarrow \mathrm{C}$

Q2 If the $\mathbf{9 5 \%}$ confidence interval for the population mean $\boldsymbol{\mu}$ is $\mathbf{(5 4 . 3 , 5 7 . 7)}$, then the point estimate of $\boldsymbol{\mu}$ is :
A) 54
B) 55
C) 56
D) 95
E) 1.7

The point estimation for μ is $\bar{X}=\frac{L+U}{2}=\frac{54.3+57.7}{2}=56 \rightarrow \mathrm{C}$

Q3 It is known that the standard deviation of weights of orange is 5 kgs . The smallest sample size that we can choose to estimate the population mean by $\mathbf{9 5 \%}$ C.I with the interval length of 0.8 is :
A) 601
B) 600
C) $\mathbf{2 5}$
D) 13
E) None
$\mathrm{L}=2 * \mathrm{E} \rightarrow \mathrm{E}=\frac{0.8}{2}=0.4$
$Z_{0.95}^{*}=1.96$
$\mathrm{n}=\left(Z_{\frac{\alpha}{2}} * \frac{\sigma}{E}\right)^{2}=\left(\frac{1.96 * 5}{0.4}\right)^{2}=600.25=601 \rightarrow \mathrm{~A}$

Q4 The lifetime (age) in hours of a random sample of one of the batteries
produced in Jordan gave the following: $n=9, \bar{X}=90 \& S=3$. A 98% C.I for the mean is :
A) $(87.18,92.82)$
В) $(87.1,92.9)$
C) $(6.1,11.9)$
σ unknown $\& \mathrm{n}<30 \rightarrow$ use t -dis tables
$1-\alpha=0.98 \rightarrow \alpha=0.02 \rightarrow \frac{\alpha}{2}=0.01 \rightarrow \mathrm{t}_{0.01}(8)=2.9$
$\left(\bar{X}-t_{\frac{\alpha}{2}} * \frac{s}{\sqrt{n}}, \bar{X}+t_{\frac{\alpha}{2}} * \frac{s}{\sqrt{n}}\right)=\left(90-2.9 * \frac{3}{\sqrt{9}}, 90+2.9 * \frac{3}{\sqrt{9}}\right)$
$=(87.1,92.9) \rightarrow B$

Q5 If the 90% C.I for the mean is $(36,44)$, one of the following could be 97% C.I. computed from the same data:
A) $(\mathbf{3 6}, 41)$
B) $(\mathbf{3 9}, 41)$
C) $(38,45)$
D) $(35,45)$
E) $(39,43)$

As the confidence level increase, the error increase, and the C.I become wider $\rightarrow \mathrm{D}$

Q6 The lower limit of a confidence interval at the 95% level of confidence for the population proportion if a sample of size 100 had 40 successes is :
A) 0.3898
В) 0.2102
C) 0.304
D) 0.2959
E) 0.4001
$\hat{P}=\frac{X}{n}=\frac{40}{100}=0.40 \& Z_{0.95}^{*}=1.96$
$\mathrm{L}=\hat{P}-Z_{\frac{\alpha}{2}} * \sqrt{\frac{\hat{P}(1-\hat{P})}{n}}=0.40-1.96 * \sqrt{\frac{0.40 * 0.60}{100}}=0.304 \rightarrow \mathrm{C}$

Q7 Suppose that a population is normally distributed with mean 30 . A random sample of size 13 is chosen and showed a standard deviation of 5.862, a 99% C.I for the standard deviation is:
$1-\alpha=0.99 \rightarrow \alpha=0.01 \rightarrow \frac{\alpha}{2}=0.005,1-0.005=0.995 \quad$ " $\mathrm{df}=12$ "
$X_{0.005}^{2}(12)=28.3, X_{0.995}^{2}(12)=3.07$
$\left(\sqrt{\frac{(\mathrm{n}-1) \mathrm{S}^{2}}{\mathrm{X}_{\alpha / 2}^{2}}}, \sqrt{\frac{(\mathrm{n}-1) \mathrm{S}^{2}}{\mathrm{X}_{1-\alpha / 2}^{2}}}\right)=\left(\sqrt{\frac{12 * 5.862^{2}}{28.3}}, \sqrt{\frac{12 * 5.862^{2}}{3.07}}\right)=(3.82,11.59)$

Q8 Suppose the height of university trees (in meters) is normally distributed with mean μ and standard deviation σ. if the mean height of a random sample of 16 trees is $\mathbf{(9 . 1 6)}$, it is known that the population std is (2.5) meters and we want to construct a 98% C.I for the mean heights, the standard error equal to
A) $\mathbf{8 . 2 6}$
В) 7.83
C) 6.33
D) $\mathbf{1 3 . 6 7}$
E) 0.625
$\mathrm{SE}=\frac{\sigma}{\sqrt{n}}=\frac{2.5}{\sqrt{16}}=0.625 \rightarrow \mathrm{E}$

Q9 A random sample with size 6 and variance 2 is drawn from a normally distributed population with variance $\sigma^{\mathbf{2}}$. Then a $\mathbf{9 0 \%}$ C.I. for $\boldsymbol{\sigma}^{\mathbf{2}}$ is.......
A) $(0.903,8.734)$
B) $(1.355,12.1)$
C) $(1.81,17.47)$
D) $(2.26,21)$
$1-\alpha=0.90 \rightarrow \alpha=0.1 \rightarrow \frac{\alpha}{2}=0.05$ and $1-\frac{\alpha}{2}=0.95$ with d.f $=5$
$X_{0.05}^{2}(5)=11.07 \quad \& X_{0.95}^{2}(5)=1.145$
$\left(\frac{(\mathrm{n}-1) \mathrm{S}^{2}}{\mathrm{X}_{\alpha / 2}^{2}}, \frac{(\mathrm{n}-1) \mathrm{S}^{2}}{\mathrm{X}_{1-\alpha / 2}^{2}}\right)=\left(\frac{5 * 2}{11.07}, \frac{5 * 2}{1.145}\right)=(0.903,8.734) \rightarrow \mathrm{A}$

Q10 From a normally distributed population, a random sample of size 16 is chosen and showed mean 51 and variance 25 . A 90% C.I. for the population mean is:
A) $\mathbf{5 1} \pm \mathbf{2 . 6 3}$
В) $\mathbf{5 1} \pm \mathbf{3 . 0 7}$
C) $\mathbf{5 1} \pm \mathbf{1 . 2 7}$
D) $\mathbf{5 1} \pm \mathbf{3 . 5 1}$
E) $\mathbf{5 1} \pm \mathbf{2 . 1 9}$
$\mathrm{n}=16, \quad \overline{\mathrm{X}}=51, \mathrm{~S}^{2}=25$
90\% C. I for $\mu \rightarrow \bar{X} \pm t_{a / 2} \frac{S}{\sqrt{n}}$
$1-\alpha=0.90 \rightarrow \alpha=0.10 \rightarrow \frac{\alpha}{2}=0.05 \rightarrow \mathrm{t}_{0.05}^{(15)}=1.753$
$51 \pm 1.753 \frac{(5)}{\sqrt{16}} \rightarrow 51 \pm 2.19 \rightarrow \mathrm{E}$

Q11 Using t-tables, Report the t-table for the $\mathbf{8 0 \%}$ confidence interval with d.f. $=\mathbf{1 0}$
A) $\mathbf{2 . 7 9 7}$
B) $\mathbf{2 . 0 6 0}$
C) $\mathbf{1 . 3 1 6}$
D) 1.372
E) None
$1-\alpha=0.80 \rightarrow \alpha=0.2 \rightarrow \frac{\alpha}{2}=0.1 \rightarrow t_{10}^{(10)}=1.372 \rightarrow D$
Q12 In a random sample of 200 males, 180 are smokers. A $\mathbf{8 0 \%}$ C.I for \mathbf{P} the proportion of smokers in the sampled population equals to:
A) $(0.53,0.67)$
B) $(0.511,0.689)$
C) $(0.873,0.927)$
D) $(0.556,0.644)$
$\widehat{\mathrm{P}}=\frac{\mathrm{x}}{\mathrm{n}}=\frac{180}{200}=0.9$ and $\mathrm{Z}_{80 \%}=1.282$
$\widehat{\mathrm{P}} \mp \mathrm{Z}_{\alpha / 2} \cdot \sqrt{\frac{\widehat{\mathrm{P}}(1-\widehat{\mathrm{P}})}{\mathrm{n}}}=0.9 \pm 1.282 \sqrt{\frac{0.9(0.1)}{200}}=(0.873,0.927) \rightarrow \mathrm{C}$

Q14 If it is known that the population variance is 25 and we want to estimate the population mean by a 95% C.I with margin of error 0.3 , then the smallest suitable sample size is \qquad
A) $\mathbf{3 2 . 6 6}$
B) 32
C) $\mathbf{1 0 6 7 . 1 1}$
D) 1068
E) 1067
$\mathrm{E}=0.3 \quad, \quad \sigma^{2}=25 \quad, \quad 95 \%=$ C. I for $\mu \rightarrow Z_{\alpha / 2}=1.96$
$\mathrm{n}=\left(\mathrm{Z}_{\alpha / 2} \cdot \frac{\sigma}{\mathrm{E}}\right)^{2}=\left(\frac{1.96(5)}{0.3}\right)^{2}=1067.11=1068 \rightarrow \mathrm{D}$

Q15 If $(0.36,0.86)$ is a confidence interval for the population mean, Then the point estimator in this confidence interval is:
A) $\mathbf{0 . 3 5}$
B) 0.61
C) 0.3
D) 0.5
E) 0.15
$\overline{\mathrm{X}}=\frac{\mathcal{L}+\mu}{2}=\frac{0.36+0.86}{2}=0.61 \rightarrow \mathrm{~B}$

Sheet (2)

Q1 the following table present the weights of new born babies before and after taking a certain vitamin, $\overline{\boldsymbol{d}}=\mathbf{- 1}$ and $\mathrm{s} . \mathrm{d}=1$. construct a $\mathbf{9 0 \%}$ C.I for μ_{d}.

Baby no.	Before	After
$\mathbf{1}$	$\mathbf{4}$	6
2	5	5
3	3	4

$1-\alpha=0.90 \rightarrow \alpha=0.1 \rightarrow \frac{\alpha}{2}=0.05$ with $\mathrm{df}=2 \rightarrow t_{0.05}(2)=2.92$
$\left(\bar{d}-t_{\alpha / 2} * \frac{s . d}{\sqrt{n}}, \bar{d}+t_{\alpha / 2} * \frac{s . d}{\sqrt{n}}\right)=\left(-1-2.92 * \frac{1}{\sqrt{3}},-1+2.92 * \frac{1}{\sqrt{3}}\right)=(-2.69,0.69)$

Q2 sample (1) of size $n_{1}=8$ has mean $\bar{X}_{1}=40$ and variance $S_{1}^{2}=20$ is chosen from population (1) with mean μ_{1}.

Sample (2) of size $n_{2}=14$ has mean $\bar{X}_{2}=46$ and variance $S_{2}^{2}=25$ is chosen from population (2) with mean μ_{2}.

Assuming that the two populations are normally distributed with equal population variances and the two samples are independent. a 90% C.I for the difference between the two means $\mu_{1}-\mu_{2}$ is:
A) $\mathbf{- 6} \mp \mathbf{3 . 5 9}$
B) $\mathbf{- 6} \mp 3.39$
C) -6 ∓ 3.29
D) $\mathbf{- 6} \mp \mathbf{3 . 6 9}$
$\sigma_{1} \& \sigma_{2}$ are unknown, $\mathrm{n}<30 \& \mathrm{~m}<30 \rightarrow$ use t -dis tables
$\mathrm{S} . \mathrm{P}=\sqrt{\frac{S_{1}^{2}(n-1)+S_{2}^{2}(m-1)}{n+m-2}}=\sqrt{\frac{7 * 20+13 * 25}{8+14-2}}=4.82$
$1-\alpha=0.90 \rightarrow \alpha=0.1 \rightarrow \frac{\alpha}{2}=0.05$ with df $=8+14-2=20$
$\mathrm{t} 0.05(20)=1.725$
$(\bar{X}-\bar{Y}) \mp \mathrm{t}_{\alpha / 2} * \mathrm{~S} . \mathrm{P} * \sqrt{\frac{1}{\mathrm{n}}+\frac{1}{\mathrm{~m}}}=(40-46) \mp 1.725 * 4.82 * \sqrt{\frac{1}{8}+\frac{1}{12}}$
$=-6 \mp 3.69 \rightarrow \mathrm{D}$

Q3 The given table represents information about the grades of two groups of students. Assuming that the two populations are normally distributed with equal variances, use $\mathbf{S}^{2} \mathbf{p}=\mathbf{2 5}$ to calculate a $\mathbf{8 0 \%}$ confidence interval (CI) for the difference between the two population means $\mu_{m}-\mu_{\mathrm{f}}$:

	Males (M)	Females (F)
Sample size (\mathbf{n})	$\mathbf{1 2}$	$\mathbf{1 0}$
Sample mean $(\overline{\boldsymbol{x}})$	$\mathbf{5 0}$	$\mathbf{6 0}$

А) $(-16.09,-3.91)$
В) $(-14.466,-5.534)$
C) (-13.692, -6.307)
D) (-12.837, -
7.163)
$1-\alpha=0.80 \rightarrow \alpha=0.2 \rightarrow \frac{\alpha}{2}=0.1$ with d.f $=12+10-2=20$
$t_{0.1}(20)=1.325$
$(\bar{X}-\bar{Y}) \mp \mathrm{t}_{\alpha / 2} * \mathrm{~S} . \mathrm{P} * \sqrt{\frac{1}{\mathrm{n}}+\frac{1}{\mathrm{~m}}}=(50-60) \mp 1.325 * \sqrt{25} * \sqrt{\frac{1}{12}+\frac{1}{10}}=(-12.837,-$ $7.163) \rightarrow \mathrm{D}$

Q4 To compare the mean finishing times of male and female participants in a 10 K race, you randomly select several finishing times from both sexes. The results are shown at the table below. Construct an 80% confidence interval for the difference in mean finishing times of male and female participants in the race.

Males	Females
$\bar{X}_{1}=0.73 \mathrm{~h}$	$\bar{X}_{2}=0.75 \mathrm{~h}$
$\mathrm{~S}_{1}=0.17 \mathrm{~h}$	
$n_{1}=20$	$\mathrm{~S}_{2}=0.04 \mathrm{~h}$
$n_{2}=12$	

$\sigma_{1} \& \sigma_{2}$ are unknown \& $n_{1}, n_{2}<30 \rightarrow t$

$$
S . P=\sqrt{\frac{S_{1}^{2}\left(n_{1}-1\right)+S_{2}^{2}\left(n_{2}-1\right)}{n_{1}+n_{2}-2}}=\sqrt{\frac{(0.17)^{2(19)+(0.04)^{2}(11)}}{20+12-2}}=0.1374
$$

$d f=20+12-2=30 \rightarrow t_{80 \%}^{(30)}=1.310$

$$
\begin{gathered}
\overline{\overline{x_{1}}}-\overline{x_{2}} \pm t_{\alpha / 2} S P \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}=0.73-0.75 \pm 1.310(0.137) \sqrt{\frac{1}{20}+\frac{1}{12}} \\
=(-0.0767,0.0367)
\end{gathered}
$$

Q5 A sample of size 3 has a standard deviation of 9 , and another sample of size 4 has a standard deviation of 5 . Assuming the two populations are distributed normal, then the pooled standard deviation is closest to
А) $\mathbf{6 . 1 7 3}$
В) 6.885
C) 47.4
D) 5.944
E) None
$\mathrm{S} . \mathrm{P}=\sqrt{\frac{S_{1}^{2}(n-1)+S_{2}^{2}(m-1)}{n+m-2}}=\sqrt{\frac{(3-1) * 9^{2}+(4-1) 5^{2}}{3+4-2}}=6.885 \rightarrow$
Q6 Suppose the cholesterol levels of 6 patients before taking a medicine (the first number) and after taking a medicine (the second number) are (225,194), $(222,205)$, $(202,203),(222,207),(224,205),(217,205)$, then the 99% confidence interval for the difference between the two cholesterol levels is:
A) $(\mathbf{- 3 4 . 2 0 1 8}, \mathbf{6 5 . 2 0})$
В) $(-1.60,32.60)$
C) $(-57.01,88.01)$
D) $(\mathbf{2} .04,28.96)$

Before	225	222	202	222	224	217
After	194	205	203	207	205	205
d_{i}	31	17	-1	15	19	12
d_{i}^{2}	961	281	1	225	361	144

$\sum d_{i}=93, \sum d_{i}^{2}=98$
$\bar{d}=\frac{\sum d_{i}}{n}=\frac{93}{6}=15.5$
$S^{2}=\frac{\sum d_{i}^{2}}{n-1}-\frac{\left(\sum d_{i}\right)^{2}}{n(n-1)}=\frac{1981}{5}-\frac{(93)^{2}}{6(5)}=107.9 \rightarrow S=\sqrt{\operatorname{var}}=\sqrt{107.9}=10.39$
$t_{99 \%}^{(5)}=4.032$
$\bar{d} \pm t_{\alpha / 2} \frac{S}{\sqrt{n}}=15.5 \pm 4.032 \frac{(10.39)}{\sqrt{6}}=(-1.6,32.6) \rightarrow B$

Q7 To compare the mean number of days spent waiting to see a family doctor for two large cities, you randomly select several people in each city who have had an appointment with a family doctor. The results are shown at the table below. Find the error of estimation that could be used to construct a 90% confidence interval for the difference in mean number of days spent waiting to see a family doctor for the two cities.

Miami	Seattle
$\bar{X}_{1}=\mathbf{2 8}$ days	$\bar{X}_{2}=26$ days
$\mathrm{S}_{1}=39.7$ days	$\mathbf{S}_{2}=42.4$ days
$n_{1}=20$	$n_{2}=17$

σ_{1} and σ_{2} are unknown $\& n_{1}, n_{2}<30 \rightarrow t$
$S . P=\sqrt{\frac{S_{1}^{2}\left(n_{1}-1\right)+S_{2}^{2}\left(n_{2}-1\right)}{n_{1}+n_{2}-2}}=\sqrt{\frac{(39.7)^{2}(19)+(42.4)^{2}(16)}{17+20-2}}=40.956$
$d f=20+17-2=35 \rightarrow t_{90 \%}^{(35)}=1.69$
Error $=t_{\alpha / 2} S P \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}=1.69(40.956) \sqrt{\frac{1}{20}+\frac{1}{17}}=22.83$
Q8 Consider the following information about two independent samples where $\widehat{\boldsymbol{P}}_{\mathbf{1}}$ is the sample proportion for the first sample and $\widehat{\boldsymbol{P}}_{2}$ is the sample proportion for the second sample. Find the error of estimation and then construct a 90% confidence interval for the difference between two population.

Sample statistics: $x_{1}=471, n_{1}=785$ and $x_{2}=372, n_{2}=465$

$$
\begin{aligned}
& \text { Sample (1) } \\
& n_{1}=785 \\
& x_{1}=471
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sample (2) } \\
& n_{2}=465 \\
& x_{2}=372
\end{aligned}
$$

$\widehat{p_{1}}=\frac{x_{1}}{n_{1}}=\frac{471}{785}=0.6$ and $\widehat{p_{2}}=\frac{x_{2}}{n_{2}}=\frac{372}{465}=0.8$
$E=Z_{\alpha / 2} \sqrt{\frac{\widehat{p_{1}}\left(1-\widehat{p_{1}}\right)}{n_{1}}+\frac{\widehat{p_{2}}\left(1-\widehat{p_{2}}\right)}{n_{2}}}=1.645 \sqrt{\frac{0.6(0.4)}{785}+\frac{0.8(0.2)}{465}}=0.0149$

For C.I $\rightarrow \widehat{p_{1}}-\widehat{p_{2}}+E=0.6-0.8 \pm 0.0149=(-0.02149,-0.1851)$

