1.6 SI Units International System of units (*metric system*) French *le Système International d'Unités*

TABLE 1.1	SI Base Units		TABL	1.2	Selected SI Prefixes
Quantity	Unit	Symbol	Prefix	Multiple	Symbol
Length	meter	m	mega	10^{6}	М
Mass	kilogram	kg	kilo	10^{3}	k
Time	second	s	deci	10^{-1}	d
Temperature	kelvin	K	centi	10^{-2}	с
Amount of substance	mole	mol	milli	10^{-3}	m
Electric current	ampere	А	micro	10^{-6}	μ^*
Luminous intensity	candela	cd	nano	10^{-9}	n
			pico	10^{-12}	р

*Greek letter mu, pronounced "mew."

In this chapter, we will discuss four base quantities: length, mass, time, and temperature.

(Q) The SI unit of length is:

- A. millimeter
- B. meter
- C. yard
- D. centimeter
- E. foot

Examples:

2.54 cm = 2.54×10^{-2} m 1 mL = 10^{-3} L 1 km = 1000 m 1 ng = 10^{-9} g 1,130,000 m = 1.13×10^{6} m = **1.13 Mm**

TABLE 1.5	SI Prefixes—Their Meanings and Values [®]				
Prefix	Meaning	Symbol	Prefix Value ^b (numerical)	Prefix Value ^b (power of ten)	
exa		Е		10^{18}	
peta		Р		10 ¹⁵	
tera		Т		10 ¹²	
giga	billions of	G	100000000	10 ⁹	
mega	millions of	Μ	1000000	10^{6}	
kilo	thousands of	k	1000	10 ³	
hecto		h		10 ²	
deka		da		10^{1}	
deci	tenths of	d	0.1	10^{-1}	
centi	hundredths of	С	0.01	10^{-2}	
milli	thousandths of	m	0.001	10^{-3}	
micro	millionths of	μ	0.000001	10^{-6}	
nano	billionths of	n	0.000000001	10^{-9}	
pico	trillionths of	р	0.000000000001	10^{-12}	
femto		f		10^{-15}	
atto		а		10^{-18}	

^aPrefixes in red type are used most often.

^bNumbers in these columns can be interchanged with the corresponding prefix.

TABLE 1.3 Some Non-SI Metric Units Commonly Used in Chemistry					
Measurement	Unit	Abbreviation	Value in SI Units		
Length	angstrom	Å	$1 \text{ Å} = 0.1 \text{ nm} = 10^{-10} \text{ m}$		
Mass	atomic mass unit	u (amu)	$1 \text{ u} = 1.66054 \times 10^{-27} \text{ kg}$ (rounded to six digits)		
	metric ton	t	$1 t = 10^3 kg$		
Time	minute	min.	1 min. = 60 s		
	hour	h	1 h = 60 min. = 3600 s		
Temperature	degree Celsius	°C	$T_{\rm K} = t_{\rm C} + 273.15$		
Volume	liter	L	$1 L = 1000 cm^3$		
TABLE 1.4 Some Useful Conversions					
Measurement	English Unit	English/SI	Equality ^a		
Length	inch	1 in. = 2.54	4 cm		
	yard	1 yd = 0.92	144 m		
	mile	1 mi = 1.60	09 km		
Mass	pound	1 lb = 453.	.6 g		
	ounce (mass)	1 oz = 28.3	35 g		
Volume	gallon	1 gal = 3.7	85 L 4		

quart

1 qt = 946.4 mL

Laboratory Measurements

• Four common

- 1. Length
- 2. Volume
- 3. Mass
- 4. Temperature

Laboratory Measurements

1. Length

- SI Unit is meter (m)
- Meter too large for most laboratory measurements
- Commonly use
 - Centimeter (cm)

 $1 \text{ cm} = 10^{-2} \text{ m} = 0.01 \text{ m}$

• Millimeter (mm)

 $1 \text{ mm} = 10^{-3} \text{ m} = 0.001 \text{ m}$

2. Volume

- Dimensions of (length)³
- SI unit for Volume = m^3
- Most laboratory measurements use *V* in liters (L)
 1 L = 1 dm³
 Chemistry glassware marked in L or mL
 1 L = 1000 mL
- What is a mL? 1 mL = 1 cm³

3. Mass

- SI unit is kilogram (kg)
 - Frequently use grams (g) in laboratory as more realistic size
- 1 kg = 1000 g 1 g = 0.001 kg
- Mass is measured by comparing weight of sample with weights of known standard masses
- Instrument used = balance

4. Temperature

- Measured with thermometer
- Three common scales

A. Fahrenheit scale

- Common in US
- Water freezes at 32 °F and boils at 212 °F
- 180 degree units between melting and boiling points of water

4. Temperature

B. Celsius scale

- Most common for use in science
- Water freezes at 0 °C
- Water boils at 100 °C
- 100 degree units between melting and boiling points of water

4. Temperature

C. Kelvin scale

- SI unit of temperature is **kelvin (K)**
 - Note: No degree symbol in front of K
- Water freezes at 273.15 K and boils at 373.15 K
 - 100 degree units between melting and boiling points
- Only difference between Kelvin and Celsius scale is zero point

Absolute Zero

- Zero point on Kelvin scale
- Corresponds to nature's lowest possible temperature

Temperature Conversions

Temperature Conversions

- Common laboratory thermometers are marked in Celsius scale
- How to convert to Kelvin scale

 $K = {}^{0}C + 273.15 \qquad 273.15 \text{ K} = 0 {}^{0}C \\ 373.15 \text{ K} = 100 {}^{0}C$

Amounts to adding 273.15 to Celsius temperature

Example: What is the Kelvin temperature of a solution at 25 °C?

$$T_{\rm K} = (25 \ ^{\circ}{\rm C} + 273.15 \ ^{\circ}{\rm C}) \frac{1 \, {\rm K}}{1 \ ^{\circ}{\rm C}} = 298 \, {\rm K}$$

1. Convert 121 °F to the Celsius scale.

$${}^{0}F = \frac{9}{5} \times {}^{0}C + 32 \qquad t_{C} = (t_{F} - 32 \ {}^{\circ}F) \begin{array}{c} \overset{\text{a}}{\overleftarrow{}} 5 \ {}^{\circ}C \\ \overset{\text{c}}{\overleftarrow{}} 9 \ {}^{\circ}F \\ \overset{\text{c}}{\overleftarrow{}} \end{array}$$

$$t_C = (121 \ {}^oF - 32 \ {}^oF) (\frac{5 \ {}^oC}{9 \ {}^oF}) = 49 \ {}^oC$$

2. Convert 121 °F to the Kelvin scale.

– We already have in °C so...

$$T_{K} = (t_{C} + 273.15^{\circ}C) \frac{1K}{1^{\circ}C} = (49 + 273.15^{\circ}C) \frac{1K}{1^{\circ}C}$$
$$T_{K} = 322 \text{ K}$$

3. Convert 77 K to the Celsius scale.

$$T_{\rm K} = (t_{\rm C} + 273.15 \text{ °C}) \frac{1 \text{ K}}{1 \text{ °C}}$$
 $t_{\rm C} = (T_{\rm K} - 273.15 \text{ K}) \frac{1 \text{ °C}}{1 \text{ K}}$

$$t_{\rm C} = (77 \text{ K} - 273.15 \text{ K}) \frac{1 \,{}^{\circ}\text{C}}{1 \,\text{K}} = -196 \,{}^{\circ}\text{C}$$

4. Convert 77 K to the Fahrenheit scale.

- We already have in °C so
$$t_{F} = \oint_{e}^{a} \frac{9 \ ^{\circ}F}{5 \ ^{\circ}C} \stackrel{^{\circ}O}{=} (-196 \ ^{\circ}C) + 32 \ ^{\circ}F = -321 \ ^{\circ}F$$

The melting point of UF_6 is 64.53 °C. What is the melting point of uranium UF_6 on the Fahrenheit scale?

- A. 67.85 °F
- B. 96.53 °F
- C. 116.2 °F
- D. 337.5 °F
- E. 148.2 °F

$$t_{\rm F} = \overset{\&}{\overset{\&}{_{\rm F}}} \frac{9 \, {}^{\circ}{\rm F}}{\overset{:}{_{\rm F}}} t_{\rm C} + 32 \, {}^{\circ}{\rm F}$$
$$\overset{\&}{\overset{\&}{_{\rm F}}} 9 \, {}^{\circ}{\rm F} \overset{:}{\overset{\circ}{_{\rm F}}} t_{\rm C} + 32 \, {}^{\circ}{\rm F}$$

 $t_{\rm F}$

$$= \oint_{e}^{a} \frac{9 \circ F^{0}}{5 \circ C_{\emptyset}^{\frac{1}{2}}} 64.53 \circ C + 32 \circ F$$

SI Units

- All physical quantities will have units <u>derived</u> from these seven SI base units
 - e.g., Area
 - Derived from SI units based on definition of area
 - length \times width = area
 - meter \times meter = area
 - $m \times m = m^2$
 - SI unit for area = square meters = m^2
- **Note:** Units undergo same kinds of mathematical operations that numbers do

TABLE 1.3	Derived Units	
Quantity	Definition of Quantity	SI Unit
Area	Length squared	m ²
Volume	Length cubed	m ³
Density	Mass per unit volume	kg/m ³
Speed	Distance traveled per unit time	m/s
Acceleration	Speed changed per unit time	m/s^2
Force	Mass times acceleration of object	$kg \cdot m/s^2$ (= newton, N)
Pressure	Force per unit area	$kg/(m \cdot s^2)$ (= pascal, Pa)
Energy	Force times distance traveled	$kg \cdot m^2/s^2$ (= joule, J)

• What is the SI derived unit for velocity?

Velocity (
$$\nu$$
) = $\frac{\text{distance}}{\text{time}}$
Velocity units = $\frac{\text{meters}}{\text{seconds}} = \frac{\text{m}}{\text{s}}$

What is the SI derived unit for volume of a cube?
 Volume (V) = length × width × height

 $V = meter \times meter \times meter$

 $V = m^3$

What is the SI derived unit for acceleration (hint: acceleration = distance/time²)?

- A. mm/min
- B. yd/hr²
- C. m/s²
- D. m/s
- E. ft³

Volume – SI derived unit for volume is cubic meter (m³)

$$1 \text{ cm}^3 = (1 \text{ x } 10^{-2} \text{ m})^3 = 1 \text{ x } 10^{-6} \text{ m}^3$$

 $1 \text{ dm}^3 = (1 \text{ x } 10^{-1} \text{ m})^3 = 1 \text{ x } 10^{-3} \text{ m}^3$

 $1 L = 1000 mL = 1000 cm^3 = 1 dm^3$

Dimensional Analysis Method of Solving Problems

- 1. Determine which unit conversion factor(s) are needed
- 2. Carry units through calculation
- 3. If all units cancel except for the *desired unit(s)*, then the problem was solved correctly.

given quantity x conversion factor = desired quantity

A person's average daily intake of glucose (a form of sugar) is 0.0833 pound (lb). What is this mass in milligrams (mg)? (1 lb = 453.6 g.)

pounds
$$\longrightarrow$$
 grams \longrightarrow milligrams

$$\frac{453.6 \text{ g}}{1 \text{ lb}} \text{ and } \frac{1 \text{ mg}}{1 \times 10^{-3} \text{ g}}$$

? mg = 0.0833 Jb ×
$$\frac{453.6 \text{ g}}{1 \text{ Jb}}$$
 × $\frac{1 \text{ mg}}{1 \times 10^{-3} \text{ g}}$ = 3.78×10⁴ mg

Q) A liquid helium storage tank has a volume of 275 L. What is the volume in m³?

Q) The density of liquid nitrogen at its boiling point (−196°C or 77 K) is 0.808 g/cm³. Convert the density to units of kg/m³.

$$\frac{1 \text{ kg}}{1000 \text{ g}} \text{ and } \frac{1 \text{ cm}^3}{1 \times 10^{-6} \text{ m}^3}$$

$$\frac{1 \text{ kg}}{1 \text{ kg}} = \frac{0.808 \text{ g}}{1 \text{ cm}^3} \times \frac{1 \text{ kg}}{1000 \text{ g}} \times \frac{1 \text{ cm}^3}{1 \times 10^{-6} \text{ m}^3} = 808 \text{ kg/m}^3$$

Example: How to convert a person's height from 68.0 in to cm? if 2.54 cm = 1 in.

Example: Convert 0.097 m to mm.

Example: Convert 3.5 m³ to cm³.

Q) Convert speed of light from 3.00×10^8 m/s to mi/hr (1 mi = 1.609 km)

The Toyota Camry hybrid electric car has a gas mileage rating of 56 miles per gallon. What is this rating expressed in units of kilometers per liter?

1 gal = 3.784 L 1 mile = 1.609 km

- A. 1.3 \times 10² km L⁻¹
- B. 24 km L⁻¹
- C. 15 km L⁻¹
- D. 3.4 \times 10² km L⁻¹
- E. 9.2 km L⁻¹

$$56 \frac{\text{mi}}{\text{gal}} \times \frac{1 \text{ gal}}{3.784 \text{ L}} \times \frac{1.609 \text{ km}}{1 \text{ mi}}$$

The volume of a basketball is 433.5 in³. Convert this to mm³.

- (1 in. = 2.54 cm)
- A. 1.101 \times 10⁻² mm³
- B. 7.104 \times 10 $^6~mm^3$
- C. 7.104 \times 10⁴ mm³
- D. 1.101 \times 10⁴ mm³
- $\text{E.}~1.101\times10^6~mm^3$

Example 1.7: The world's oceans contain approximately 1.35 x10⁹ km³ of water. What is this volume in liters?

 $1 \text{km} = 1 \times 10^3 \text{m} = 1 \times 10^3 \times 10^2 \text{ cm} = 1 \times 10^5 \text{ cm} (\text{km}^3 \rightarrow \text{cm}^3)$

 $(cm^3 \rightarrow L) (1 cm^3 = 1mL) (1mL = 1x10^{-3}L)$

Density

• Ratio of object's mass to its volume

density =
$$\frac{\text{mass}}{\text{volume}}$$
 $d = \frac{m}{V}$

- Units (depends on what units we use for mass and volume.
 - -g/mL or g/cm³
 - -Org/L or kg/L

 A student weighs a piece of gold that has a volume of 11.02 cm³ of gold. She finds the mass to be 212 g. What is the density of gold?

$$d = \frac{m}{V}$$

$$d = \frac{212 \text{ g}}{11.02 \text{ cm}^3} = 19.3 \text{ g/cm}^3$$

Another student has a piece of gold with a volume of 1.00 cm³. What does it weigh? **19.3 g** What if it were 2.00 cm³ in volume? **38.6 g**

(Q) If the density of an object is 2.87×10^{-4} lbs/cubic inch, what is its density in g/mL? (1 lb = 454 g, 1 inch = 2.54 cm)

- (Q) Which one of the following has the largest length? A) 1.5×10^{-2} mm
- B) 15 km
- C) 1.5×10^{14} nm
- D) $1.5 \times 10^{15} \text{ pm}$