Chapter 2 Atoms, Molecules, and lons

General
Chemistry
$>$ Required sections:
2.3 Nuclear Structure and Isotopes
2.4 Atomic Weights
2.8 Naming Simple Compounds
2.9 Writing Chemical Equations
2.10 Balancing Chemical Equations
> Excluded sections: 2.1, 2.2, 2.5, 2.6, 2.7

2.3 Nuclear Structure; Isotopes

Ca
Atomic number $=Z=$ number of protons in the nucleus $=$ number of electrons
Ca^{2+}
Mass number $=A=$ number of protons + number of
neutrons
Cl^{-}
Number of neutrons $=A-Z$

*The atomic mass unit (amu) equals $1.66054 \times 10^{-27} \mathrm{~kg}$: it is defined in Section 2.4 .

Example 2.1:What is the nuclide symbol for a nucleus that contains 38 protons and 50 neutrons?

Periodic Table of The Elements

\square

2.4 Atomic Masses and atomic mass Units (amu)

One atomic mass unit ($\mathbf{a m u}$) is a mass unit = 1/12 of the mass of a carbon-12 $\left({ }^{12} \mathrm{C}\right)$ atom.
Diagram of a simple mass spectrometer, showing the separation of neon isotopes.

${ }^{20} \mathrm{Ne}$ (90.48\%)
${ }^{2}{ }^{1} \mathrm{Ne}(0.27 \%)$
${ }^{22} \mathrm{Ne}(9.25 \%)$
-Ne gas atoms form +ve ions when they collide with electrons.
$-\mathrm{Ne}^{+}$atoms are accelerated from this region by the negative grid and pass between the poles of a magnet.
-The beam of positively charged atoms is split into three beams by the magnetic field according to the mass/charge ratios.
-The three beams then travel to a detector at the end of the tube

Relative Atomic Masses $\left(A_{r}\right)$

Calculate the value of A_{r} for naturally occurring chlorine if the distribution of isotopes is $75.77 \%{ }_{17}^{35} \mathrm{Cl}$ and $\mathbf{2 4 . 2 3 \%}{ }_{17}^{37} \mathrm{Cl}$. Accurate masses for ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ are 34.97 and 36.97.
Example 2.2 \quad Determining Atomic Mass from Isotopic Masses and Fractional Abundances

Chromium, Cr, has the following isotopic masses and fractional abundances:

Mass	Isotopic	Fractional
Number	Mass $($ amu $)$	Abundance
50	49.9461	0.0435
52	51.9405	0.8379
53	52.9407	0.0950
54	53.9389	0.0236

What is the atomic mass of chromium?

Solution Multiply each isotopic mass by its fractional abundance, then sum:

$$
\begin{aligned}
& 49.9461 \mathrm{amu} \times 0.0435=2.17 \mathrm{amu} \\
& 51.9405 \mathrm{amu} \times 0.8379=43.52 \mathrm{amu} \\
& 52.9407 \mathrm{amu} \times 0.0950=5.03 \mathrm{amu} \\
& 53.9389 \mathrm{amu} \times 0.0236=\frac{1.27 \mathrm{amu}}{51.99 \mathrm{amu}}
\end{aligned}
$$

The atomic mass of chromium is $\mathbf{5 1 . 9 9} \mathbf{~ a m u}$.
Answer Check The average mass (atomic mass)

If the relative atomic mass for Cl is 35.45 , and the accurate masses of ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ are 34.97 and 36.97 ; What is the fractional abundance of ${ }^{37} \mathrm{Cl}$?

2.8 Naming Simple Compounds (Chemical nomenclature)

-nomenclature of some simple inorganic compounds
$>$ Naming ionic Compounds
(Most ionic compounds contain metal + nonmetal atoms)

Cations

- Positively charged ions
- Formed from metals
- Atoms lose electrons
e.g., Na has $11 e^{-}$and $11 p$

Anions

- Negatively charged ions
- Formed from non-metals
- Atoms gain electrons
e.g., $\mathbf{C l}$ has $17 e^{-}$and $17 p \quad \mathrm{Cl}^{-}$has $18 e^{-}$and $17 p$
TABLE 2.3 Common Monatomic lons of the Main-Group Elements*

	IA	IIA	IIIA	IVA	VA	VIA	VIIA
Period 1							H^{-}
Period 2	Li^{+}	Be^{2+}	B	C	N^{3-}	O^{2-}	F^{-}
Period 3	Na^{+}	Mg^{2+}	Al^{3+}	Si	P	S^{2-}	Cl^{-}
Period 4	K^{+}	Ca^{2+}	Ga^{3+}	Ge	As	Se^{2-}	Br^{-}
Period 5	Rb^{+}	Sr^{2+}	In^{3+}	Sn^{2+}	Sb	Te ${ }^{2-}$	I^{-}
Period 6	Cs^{+}	Ba^{2+}	$\mathrm{Tl}^{+}, \mathrm{Tl}^{3+}$	Pb^{2+}	Bi^{3+}		

*Elements shown in color do not normally form compounds having monatomic ions.
$>$ Rules for Predicting the Charges on Monatomic lons:

1. In most main-group metallic elements : charge = group number in the periodic table (the Roman numeral).
2. Some metallic elements of high atomic number have more than one cation:
(i) Common cations, charge $=$ (group number -2)
(ii) Charge = group number.

Example (Pb) : common ion Pb^{2+} in addition to Pb^{4+}
3. Most transition elements form more than one monatomic cation.
-Most of these elements have one ion with a charge of $2+$. Examples: (Fe) has common cations Fe^{2+} and Fe^{3+}. (Cu) has common cations Cu^{+}and Cu^{2+}.
4. Charge on a monatomic anion for a nonmetallic main-group element = (group number - 8).
Example: (O) has the monatomic anion O^{2-}.
(The group number is 6 ; the charge is $[(6-8)=-2]$

$>$ Rules for Naming Monatomic Ions

1. Monatomic cations are named after the element if there is only one such ion.
Example: Al^{3+} is called aluminum ion; Na^{+}is called sodium ion.

| TABLE 2.5 | Monatomic Negative lons | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| H^{-} | Hydride | C^{4-} | Carbide | N^{3-} | Nitride | O^{2-} | Oxide | F^{-} | Fluoride |
| | Si^{4-} | Silicide | P^{3-} | Phosphide | S^{2-} | Sulfide | Cl^{-} | Chloride | |
| | | | As^{3-} | Arsenide | Se^{2-} | Selenide | Br^{-} | Bromide | 10 |
| | | | Te^{2-} | Telluride | I^{-} | Iodide | | | |
| | | | | | | | | | |

2. If there is more than one monatomic cation of an element \rightarrow Rule 1 is not sufficient \rightarrow Use Stock system Example: Fe^{2+} is called iron(II) ion and Fe^{3+} is called iron(III) ion. -Older system of nomenclature, such ions are named by adding the suffixes -ous and -ic to a stem name of the element to indicate the ions of lower and higher charge, respectively.

Examples:

Fe^{2+} (ferrous ion) and Fe^{3+} (ferric ion)
Cu^{+}(cuprous ion) and Cu^{2+} (cupric ion)

- Few transition metal cations, such as Zn , have only a single ion \rightarrow usually name them by just the metal name.
- Also, It's not wrong to name Zn^{2+} as zinc(II) ion.

3. The names of the monatomic anions are obtained from a stem name of the element followed by the suffix -ide. Example: Br^{-}is called bromide ion, from the stem name brom- for bromine and the suffix -ide.

Ion	Ion Name	Ion	Ion Name	Ion	Ion Name
Cr^{3+}	Chromium(III) or chromic	Co^{2+}	Cobalt(II) or cobaltous	Zn^{2+}	Zinc
Mn^{2+}	Manganese(II) or manganous	Ni^{2+}	Nickel(II) or nickel	Ag^{+}	Silver
Fe^{2+}	Iron(II) or ferrous	Cu^{+}	Copper(I) or cuprous	Cd^{2+}	Cadmium
Fe^{3+}	Iron(III) or ferric	Cu^{2+}	Copper(II) or cupric	Hg^{2+}	Mercury(II) or mercuric

> Polyatomic Ions

(oxoanions)

TABLE 2.5	Some Common Polyatomic lons		
Name	$\mathrm{Formula}^{2}$	Name	Formula
Mercury(I) or mercurous	$\mathrm{Hg}_{2}{ }^{2+}$	Permanganate	$\mathrm{MnO}_{4}{ }^{-}$
Ammonium	$\mathrm{NH}_{4}{ }^{+}$	Nitrite	$\mathrm{NO}_{2}{ }^{-}$
Cyanide	CN^{-}	Nitrate	$\mathrm{NO}_{3}{ }^{-}$
Carbonate	$\mathrm{CO}_{3}{ }^{2-}$	Hydroxide	OH^{-}
Hydrogen carbonate (or bicarbonate)	$\mathrm{HCO}_{3}{ }^{-}$	Peroxide	$\mathrm{O}_{2}{ }^{2-}$
Acetate	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-$	Phosphate	$\mathrm{PO}_{4}{ }^{3-}$
Oxalate	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{--}$	Monohydrogen phosphate	$\mathrm{HPO}_{4}{ }^{2-}$
Hypochlorite	ClO^{-}	Dihydrogen phosphate	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
Chlorite	$\mathrm{ClO}_{2}{ }^{-}$	Sulfite	$\mathrm{SO}_{3}{ }^{2-}$
Chlorate	$\mathrm{ClO}_{3}{ }^{-}$	Sulfate	$\mathrm{SO}_{4}{ }^{2-}$
Perchlorate	$\mathrm{ClO}_{4}{ }^{-}$	Hydrogen sulfite (or bisulfite)	$\mathrm{HSO}_{3}{ }^{-}$
Chromate	$\mathrm{CrO}_{4}{ }^{2-}$	Hydrogen sulfate (or bisulfate)	HSO_{4}^{-}
Dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Thiosulfate	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$

$>$ Polyatomic Ions

$\mathrm{NO}_{2}{ }^{-}$	nitrite ion
$\mathrm{NO}_{3}{ }^{-}$	nitrate ion

ClO^{-}hypochlorite ion $\mathrm{ClO}_{2}{ }^{-}$chlorite ion
$\mathrm{ClO}_{3}{ }^{-}$chlorate ion
$\mathrm{ClO}_{4}{ }^{-}$perchlorate ion
> Naming an Ionic Compound from Its Formula
(Q) Name the following compounds: Metal \rightarrow nonmetal $\mathrm{Mg}_{3} \mathrm{~N}_{2}$: magnesium nitride
CrSO_{4} : chromium(II) sulfate
PbCrO_{4} : $\mathrm{Lead}(\mathrm{II})$ chromate
"Criss-cross" rule
FeCl_{2} : Iron (II) chloride
FeCl_{3} : Iron (III) chloride
$\mathrm{Cr}_{2} \mathrm{~S}_{3}$: chromium(III) sulfide

- $\mathrm{K}_{2} \mathrm{O}$
- $\mathrm{NH}_{4} \mathrm{ClO}_{3}$
- $\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ magnesium acetate
- $\mathrm{Cr}_{2} \mathrm{O}_{3}$
- ZnBr_{2}
(Q) Determine The Formula of the following compounds:

Calcium hydroxide Manganese(II) bromide Ammonium phosphate Mercury(I) Fluoride Mercury(II) Fluoride Mercury(I) nitride
Iron(II) phosphate
Titanium(IV) oxide
Thallium(III) nitrate
$\mathrm{Ca}(\mathrm{OH})_{2}$
MnBr_{2}
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
$\mathrm{Hg}_{2} \mathrm{~F}_{2}$
HgF_{2}
$\left(\mathrm{Hg}_{2}\right)_{3} \mathrm{~N}_{2}$
$\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
TiO_{2}
$\mathrm{Tl}\left(\mathrm{NO}_{3}\right)_{3}$

(Q) Which is the correct name for $\mathrm{Cu}_{2} \mathrm{~S}$?

A. copper sulfide
B. copper(II) sulfide
C. copper(II) sulfate
D. copper(I) sulfide
E. copper(I) sulfite
(Q) Which is the correct formula for ammonium sulfite?
A. $\mathrm{NH}_{4} \mathrm{SO}_{3}$
B. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{3}$
C. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
D. $\mathrm{NH}_{4} \mathrm{~S}$
E. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
(Q) Name the following compounds:
(a) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$
(b) $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
(c) $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$
(Q)Write chemical formulas for the following compounds:
(a) cesium sulfide
(b) calcium phosphate

$>$ Naming Hydrates

1.Name ionic compound
2. Give number of water molecules in formula using Greek prefixes
$\mathrm{Ca}\left(\mathrm{SO}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad$ calcium sulfate dihydrate
$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ cobalt(II) chloride hexahydrate $\mathrm{Fel}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ iron(III) iodide trihydrate
$\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O} \quad$ iron(III) nitrite nonahydrate

TABLE 2.6	
Greek Prefixes for	
Naming Compounds	
Number	Prefix
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

$>$ Naming Molecular Compounds:

(Non-metal + Non-metal) or (Non-metal + Metalliod)

-binary compounds: composed of only two elements
e.g. $\mathrm{NaCl}, \mathrm{MgCl}_{2}$ (ionic). $\mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CCl}_{4}, \mathrm{NH}_{3}$ (molecular)
-Order of Elements in the Formula:
In ionic compounds: metal \rightarrow non-metal NaCl not CINa

In molecular compounds:
Element
Group
3 A
4 A
Si C
$\underbrace{\mathrm{Sb} \mathrm{As} \mathrm{P} \mathrm{N}}_{5 \mathrm{~A}} \mathrm{H} \underbrace{\mathrm{Te}}_{6 \mathrm{~A}} \underbrace{\mathrm{~S}}_{7 \mathrm{~A}}$
$\underbrace{\mathrm{Br} \mathrm{Cl}}_{7 \mathrm{~A}} \mathrm{O}$ F
NF_{3} not $\mathrm{F}_{3} \mathrm{~N}$
$\mathrm{H}_{2} \mathrm{~S}$ not SH_{2}
SbH_{3} not $\mathrm{H}_{3} \mathrm{Sb}$

$>$ Rules for Naming Binary Molecular Compounds

1. The name of the compound has the elements in the order given in the previous formula.
2. Name the first element using the exact element name.
3. Name the second element by writing the stem name of the element with the suffix -ide
4. You add a prefix, derived from the Greek, to each element name to denote the subscript of the element in the formula. Note: the prefix mono- is not used, unless it is needed to distinguish two compounds of the same two elements.

Examples:	ent B $\underbrace{\text { Sb As P }}_{\text {Si C C }}$ N H Te Se S $\underbrace{\text { I Br C }}$
$\mathrm{N}_{2} \mathrm{O}_{3}$ dinitrogentrioxide	up 3A

ClO_{2} chlorine dioxide
$\mathrm{Cl}_{2} \mathrm{O}_{7}$ dichlorine heptoxide ${ }^{9}$
$\mathrm{H}_{2} \mathrm{~S}$ dihydrogen sulfide NO nitrogen monoxide $\mathrm{H}_{2} \mathrm{O}$ water NH_{3} ammonia
NO_{2}
$\mathrm{N}_{2} \mathrm{O}$
$\mathrm{N}_{2} \mathrm{O}_{4}$
$\mathrm{P}_{4} \mathrm{O}_{6}$
$\mathrm{Cl}_{2} \mathrm{O}_{6}$
PCl_{3}
PCl_{5}
nitrogen dioxide dinitrogen monoxide dinitrogen tetroxide tetraphosphorus hexoxide dichlorine hexoxide phosphorus trichloride phosphorus pentachloride
disulfur dichloride tetraphosphorus trisulfide carbon disulfide sulfur trioxide
$\mathrm{S}_{2} \mathrm{Cl}_{2}$
$\mathrm{P}_{4} \mathrm{~S}_{3}$
CS_{2}
SO_{3}

Boron trifluoride

Chlorine monofluoride

Hydrogen selenide
Or dihydrogen selenide
GaBr_{3}
GeBr_{4}
CaBr_{2} $\mathrm{Hg}_{2}\left(\mathrm{NO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Gallium (III) bromide
Germanium tetrabromide
Calcium bromide
Mercury(I) nitrite monohydrate

$>$ Acids and Corresponding Anions

Anion Suffix
-ate
-ite
Acid Suffix -ic
-ous

Table 2.8 Some Oxoanions and Their Corresponding Oxoacids

Oxoanion		Oxoacid	
$\mathrm{CO}_{3}{ }^{2-}$	Carbonate ion	$\mathrm{H}_{2} \mathrm{CO}_{3}$	Carbonic acid
NO_{2}^{-}	Nitrite ion	HNO_{2}	Nitrous acid
NO_{3}^{-}	Nitrate ion	HNO_{3}	Nitric acid
$\mathrm{PO}_{4}{ }^{3-}$	Phosphate ion	$\mathrm{H}_{3} \mathrm{PO}_{4}$	Phosphoric acid
$\mathrm{SO}_{3}{ }^{2-}$	Sulfite ion	$\mathrm{H}_{2} \mathrm{SO}_{3}$	Sulfurous acid
$\mathrm{SO}_{4}{ }^{2-}$	Sulfate ion	$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid
ClO^{-}	Hypochlorite ion	HClO^{-}	Hypochlorous acid
ClO_{2}^{-}	Chlorite ion	HClO_{2}	Chlorous acid
ClO_{3}^{-}	Chlorate ion	HClO_{3}	Chloric acid
ClO_{4}^{-}	Perchlorate ion	HClO_{4}	Perchloric acid

Binary Compound
$\mathrm{HBr}(g)$, hydrogen bromide $\mathrm{HF}(g)$, hydrogen fluoride

Acid Solution
hydrobromic acid, $\mathrm{HBr}($ aq $)$ hydrofluoric acid, $\operatorname{HF}(a q)$

(Q)Selenium has an oxoacid, $\mathrm{H}_{2} \mathrm{SeO}_{4}$, called selenic acid. What is the formula and name of the corresponding anion?
Selenate $\mathrm{SeO}_{4}{ }^{2-}$

Exercise 2.10

What are the name and formula of the anion corresponding to perbromic acid, HBrO_{4} ?
$\mathrm{BrO}_{4}^{-}{ }^{-}$perbromate

$>$ Chemical Reactions: Equations

Example 2.12 Balancing Simple Equations

Balance first the atoms for elements that occur in only one substance on each side of the equation.
(a) $\mathrm{H}_{3} \mathrm{PO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{PH}_{3}$
(b) $\mathrm{Ca}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
(c) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Exercise 2.13
Find the coefficients that balance the following equations.
a. $\mathrm{O}_{2}+\mathrm{PCl}_{3} \rightarrow \mathrm{POCl}_{3}$
b. $\mathrm{P}_{4}+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{P}_{4} \mathrm{O}_{6}+\mathrm{N}_{2}$
c. $\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{As}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$
d. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$

Examples:

(Q)When the following equation is balanced and written with the smallest whole number coefficients, what is the coefficient of Al ?

$$
\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}
$$

(Q) When the following equation is balanced and written with the smallest whole number coefficients, what is the sum of coefficients of Al and Fe ?

$$
\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}
$$

(Q) When the following equation is balanced and written with the smallest whole number coefficients, what is the sum of all coefficients?

$$
\mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{HNO}_{3} \longrightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

