EBBING - GAMMON

Chapter 2 Atoms, Molecules, and lons

General Chemistry ELEVENTH EDITION

©2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

- Required sections:
- 2.3 Nuclear Structure and Isotopes
- 2.4 Atomic Weights
- 2.8 Naming Simple Compounds
- 2.9 Writing Chemical Equations
- 2.10 Balancing Chemical Equations
- > <u>Excluded sections</u>: 2.1, 2.2, 2.5, 2.6, 2.7

2.3 Nuclear Structure; Isotopes

Number of neutrons
$$= A - Z$$

TABLE 2.1		Propertie	s of the Electron, Pro	ton, and Neu	tron
Particle	Mass (kg)		Charge (C)	Mass (amu)*	Charge (e)
Electron	9.10939	$\times 10^{-31}$	-1.60218×10^{-19}	0.00055	-1
Proton	1.67262	$\times 10^{-27}$	$+1.60218 \times 10^{-19}$	1.00728	+1
Neutron	1.67493	$\times 10^{-27}$	0	1.00866	0

*The atomic mass unit (amu) equals 1.66054×10^{-27} kg; it is defined in Section 2.4.

Example 2.1:What is the nuclide symbol for a nucleus that contains 38 protons and 50 neutrons?

Periodic Table of The Elements

Mai	n-Grou	p Elem	ents											Mai	n-Grou	p Elem	ients	
1	1 IA 1 H 1.00794	2 11A		Atomic number Symbol Atomic mass							13 ША	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA 2 He 4.002602		
2	3 Li 6.941	4 Be 9.012182				Т	ransitio	n Meta	ıls				5 B 10.811	6 C 12.0107	7 N 14.0067	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
3	11 Na 22.98976928	12 Mg 24.3050	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 N IB	12 ПВ	13 Al 26.9815386	14 Si 28.0855	15 P 30.973762	16 S 32.065	17 Cl 35.453	18 Ar 39.948
4	19 K 39.0983	20 Ca 40.078	21 Sc 44.955912	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938045	26 Fe 55.845	27 Co 58.933195	28 NI 58.6934	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83.798
5	37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 / In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.293
6	55 Cs 132:9054519	56 Ba 137.327	71 Lu 174.967	72 Hf 178,49	73 Ta 180.94788	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.084	79 Au 196,966569	80 Hg 200.59	81 TI 204.3833	82 Pb 207.2	83 Bi 208.98040	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	103 Lr (262)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (272)	112 Uub (285)	113 Uut (284)	114 Uuq (289)	115 Uup (288)	116 Uuh (291)		118 Uuo (294)

2.4 Atomic Masses and atomic mass Units (amu) One **atomic mass unit (amu)** is a mass unit = 1/12 of the mass of a carbon-12 (^{12}C)atom.

Diagram of a simple mass spectrometer, showing the separation of neon isotopes.

²⁰Ne (90.48%)
²¹Ne (0.27%)
²²Ne (9.25%)

Magnet

-Ne gas atoms form +ve ions when they collide with electrons.

-Ne⁺ atoms are accelerated from this region by the negative grid and pass between the poles of a magnet. -The beam of positively charged atoms is split into three beams by the magnetic field according to the **mass/charge ratios**.

-The three beams then travel to a detector at the end of the tube $^{\mbox{\scriptsize 5}}$

Relative Atomic Masses (*A*_r**)**

Calculate the value of A_r for naturally occurring chlorine if the distribution of isotopes is 75.77% $^{35}_{17}$ Cl and 24.23% $^{37}_{17}$ Cl. Accurate masses for 35 Cl and 37 Cl are 34.97 and 36.97.

Exercise 2.2 ing isotopes:	Chlorine consis	ts of the follow
Isotope	Isotopic Mass (amu)	Fractional Abundance
Chlorine-35	34.96885	0.75771
Chlorine-37	36.96590	0.24229

What is the atomic mass of chlorine?

Example 2.2	Determining Atomic Mass from Isotopic Masses and Fractional Abundances

Chromium, Cr, has the following isotopic masses and fractional abundances:

Mass Number	Isotopic Mass (amu)	Fractional Abundance
50	49.9461	0.0435
52	51.9405	0.8379
53	52.9407	0.0950
54	53.9389	0.0236

What is the atomic mass of chromium?

Solution Multiply each isotopic mass by its fractional abundance, then sum:

$49.9461 \text{ amu} \times 0.0435 =$	2.17 amu
51.9405 amu × 0.8379 =	43.52 amu
52.9407 amu × 0.0950 =	5.03 amu
53.9389 amu × 0.0236 =	1.27 amu
	51.99 amu

The atomic mass of chromium is 51.99 amu.

Answer Check The average mass (atomic mass)

If the relative atomic mass for CI is 35.45, and the accurate masses of ³⁵CI and ³⁷CI are 34.97 and 36.97; What is the fractional abundance of ³⁷CI ?

2.8 Naming Simple Compounds (Chemical nomenclature)

-nomenclature of some simple inorganic compounds

Naming ionic Compounds

(Most ionic compounds contain metal + nonmetal atoms)

Cations

- Positively charged ions
- Formed from metals
- Atoms lose electrons
- e.g., Na has 11 e⁻ and 11 p

Anions

- Negatively charged ions
- Formed from non-metals
- Atoms gain electrons

e.g., CI has 17 e⁻ and 17 p

Examples: NaCl K₂SO₄

Exception: NH₄CI

Na⁺ has 10 *e*⁻ and 11 *p*

CI⁻ has 18 *e*⁻ and 17 *p* ⁸

TABLE 2.3	Common Monatomic Ions of the Main-Group Elements*						
	IA	IIA	IIIA	IVA	VA	VIA	VIIA
Period 1							H^{-}
Period 2	Li ⁺	Be ²⁺	В	С	N ³⁻	O^{2-}	F^{-}
Period 3	Na ⁺	Mg ²⁺	Al ³⁺	Si	Р	S ²⁻	Cl^{-}
Period 4	K^+	Ca ²⁺	Ga ³⁺	Ge	As	Se ²⁻	Br^{-}
Period 5	Rb^+	Sr ²⁺	In ³⁺	Sn ²⁺	Sb	Te ²⁻	Ι-
Period 6	Cs ⁺	Ba ²⁺	Tl^+, Tl^{3+}	Pb ²⁺	Bi ³⁺		

*Elements shown in color do not normally form compounds having monatomic ions.

Rules for Predicting the Charges on Monatomic Ions:

- In most main-group metallic elements : charge = group number in the periodic table (the Roman numeral).
- 2. Some metallic elements of high atomic number have more than one cation:

9

- (i) Common cations, charge = (group number 2)
- (ii) Charge = group number.
 Example (Pb): common ion Pb²⁺ in addition to Pb⁴⁺

3. Most transition elements form more than one monatomic cation.

-Most of these elements have one ion with a charge of 2+. Examples: (Fe) has common cations Fe²⁺ and Fe³⁺.

(Cu) has common cations Cu⁺ and Cu²⁺.

4. Charge on a monatomic anion for a **<u>nonmetallic</u>** main-group element = (group number – 8).

Example: (O) has the monatomic anion O^{2^-} . (The group number is 6; the charge is [(6-8)= -2]

Rules for Naming Monatomic Ions

1. Monatomic cations are named after the element if there is only one such ion.

Example: Al³⁺ is called aluminum ion; Na⁺ is called sodium ion.

TAB	LE 2.5	Monatomi	c Negative	lons						
H-	Hydride	C ⁴⁻	Carbide	N ³⁻	Nitride	O ²⁻	Oxide	F^{-}	Fluoride	
		Si ^{4–}	Silicide	P ³⁻	Phosphide	S ²⁻	Sulfide	Cl-	Chloride	
				As ³⁻	Arsenide	Se ²⁻	Selenide	Br^{-}	Bromide	10
51				Te ²⁻	Telluride	Ι-	Iodide			10

2. If there is more than one monatomic cation of an element \rightarrow

Rule 1 is not sufficient →Use **Stock system**

Example: Fe^{2+} is called iron(II) ion and Fe^{3+} is called iron(III) ion. -Older system of nomenclature, such ions are named by adding the suffixes *-ous* and *-ic* to a stem name of the element to indicate the ions of lower and higher charge, respectively.

Examples:

- Fe²⁺ (ferrous ion) and Fe³⁺ (ferric ion)
- Cu⁺ (cuprous ion) and Cu²⁺ (cupric ion)
- Few transition metal cations , such as Zn, have only a single ion →usually name them by just the metal name.
- Also, It's not wrong to name Zn²⁺ as zinc(II) ion.

3. The names of the monatomic **anions** are obtained from a stem name of the element followed by the suffix *-ide.* Example: Br⁻ is called **bromide** ion, from the stem name *brom-* for bromine and the suffix *-ide.*

TABLE 2.4 Common Cations of the Transition Elements

lon	Ion Name	lon	Ion Name	lon	Ion Name
Cr ³⁺	Chromium(III) or chromic	Co ²⁺	Cobalt(II) or cobaltous	Zn^{2+}	Zinc
Mn ²⁺	Manganese(II) or manganous	Ni ²⁺	Nickel(II) or nickel	Ag^+	Silver
Fe ²⁺	Iron(II) or ferrous	Cu ⁺	Copper(I) or cuprous	Cd^{2+}	Cadmium
Fe ³⁺	Iron(III) or ferric	Cu ²⁺	Copper(II) or cupric	Hg ²⁺	Mercury(II) or mercuric

> Polyatomic Ions

(oxoanions)

TABLE 2.5	Some Common P	olyatomic Ions		
Name		Formula	Name	Formula
Mercury(I) or merc	urous	Hg2 ²⁺	Permanganate	MnO_4^-
Ammonium		$\mathrm{NH_4}^+$	Nitrite	NO_2^-
Cyanide		CN ⁻	Nitrate	NO ₃ ⁻
Carbonate		CO3 ²⁻	Hydroxide	OH^-
Hydrogen carbonate	e (or bicarbonate)	HCO ₃ ⁻	Peroxide	O_2^{2-}
Acetate		$C_2H_3O_2^-$	Phosphate	PO_4^{3-}
Oxalate		$C_2 O_4^{2-}$	Monohydrogen phosphate	HPO_4^{2-}
Hypochlorite		ClO ⁻	Dihydrogen phosphate	$H_2PO_4^-$
Chlorite		ClO_2^-	Sulfite	SO3 ²⁻
Chlorate		ClO ₃ ⁻	Sulfate	SO_4^{2-}
Perchlorate		ClO_4^-	Hydrogen sulfite (or bisulfite)	HSO_3^-
Chromate		CrO4 ²⁻	Hydrogen sulfate (or bisulfate)	HSO_4^-
Dichromate		${\rm Cr_2O_7}^{2-}$	Thiosulfate	$S_2 O_3^{2-}$

> Polyatomic Ions

- NO_2^- nitr<u>ite</u> ion
- NO_3^- nitrate ion
- ClO⁻ <u>hypo</u>chlor<u>ite</u> ion
- ClO_2^- chlor<u>ite</u> ion
- ClO_3^- chlor<u>ate</u> ion
- ClO_4^- <u>perchlorate</u> ion
- > Naming an Ionic Compound from Its Formula

(Q) Name the following compounds: Mg_3N_2 : magnesium nitride $CrSO_4$: chromium(II) sulfate $PbCrO_4$: Lead(II) chromate $FeCl_2$: Iron (II) chloride $FeCl_3$: Iron (III) chloride Cr_2S_3 : chromium(III) sulfide $Metal \rightarrow nonmetal$ "Criss-cross" rule

- K₂O potassium oxide
- NH₄ClO₃ ammonium chlorate
- $Mg(C_2H_3O_2)_2$ magnesium acetate
- Cr₂O₃ chromium(III) oxide
- ZnBr₂ zinc bromide
- (Q) Determine The Formula of the following compounds:

Calcium hydroxide Manganese(II) bromide Ammonium phosphate Mercury(I) Fluoride Mercury(II) Fluoride Mercury(I) nitride Iron(II) phosphate Titanium(IV) oxide Thallium(III) nitrate $Ca(OH)_{2}$ $MnBr_{2}$ $(NH_{4})_{3}PO_{4}$ $Hg_{2}F_{2}$ HgF_{2} $(Hg_{2})_{3}N_{2}$ $Fe_{3}(PO_{4})_{2}$ TiO_{2} $Ti(NO_{3})_{3}$ (Q) Which is the correct name for Cu_2S ?

- A. copper sulfide
- B. copper(II) sulfide
- C. copper(II) sulfate
- D. copper(I) sulfide
- E. copper(I) sulfite

(Q) Which is the correct formula for ammonium sulfite? A. NH_4SO_3

- B. $(NH_4)_2SO_3$
- C. (NH₄)₂SO₄
- D. NH_4S
- E. $(NH_4)_2S$

(Q) Name the following compounds:

- (a) $Fe(NO_3)_2$
- (b) Na₂HPO₄
- (c) $(NH_4)_2(C_2O_4)$

(Q)Write chemical formulas for the following compounds:

(a) cesium sulfide

(b) calcium phosphate

Naming Hydrates

1.Name ionic compound 2.Give number of water molecules in formula using Greek prefixes TABLE 2.6

Ca(SO₄).2H₂O calcium sulfate dihydrate

CoCl₂.6H₂O cobalt(II) chloride hexahydrate

Fel₃·3H₂O iron(III) iodide trihydrate

 $Fe(NO_2)_3.9H_2O$ iron(III) nitrite nonahydrate

Greek Prefixes for Naming Compounds

Number	Prefix
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

Naming Molecular Compounds:

(Non-metal + Non-metal) or (Non-metal + Metalliod)

-binary compounds: *composed of only two elements e.g.* NaCl, MgCl₂ (*ionic*). CO, H₂O, CCl₄, NH₃ (*molecular*)

-Order of Elements in the Formula: In ionic compounds: metal → non-metal NaCl not ClNa

In molecular compounds:

Element <u>B</u> Si C Sb As P N H Te Se S I Br Cl O F Group 3A 4A 5A 6A 7A NF₃ not F_3N H₂S not SH₂ SbH₃ not H₃Sb

> Rules for Naming Binary Molecular Compounds

- 1. The name of the compound has the elements in the order given in the previous formula.
- 2. Name the first element using the exact element name.
- 3. Name the second element by writing the stem name of the element with the suffix *-ide*
- 4. You add a prefix, derived from the Greek, to each element name to denote the subscript of the element in the formula. Note: the **prefix** *mono* is not used, unless it is needed to distinguish two compounds of the same two elements.

Examples:

- Element <u>B</u> Si C Sb As P N H Te Se S I Br Cl O F
- N₂O₃ dinitrogentrioxide Group 3A 4A 5A 6A 7A
- HCI hydrogen chloride NOT monohydrogen monochloride
- CO carbon monoxide
- CO₂ carbon dioxide
- SF₄ sulfur tetrafluoride
- SF₆ sulfur hexafluoride

CIO₂ chlorine dioxide CI₂O₇ dichlorine heptoxide⁹

H_2S	dihydrogen sulfide	common na
NŌ	nitrogen monoxide	common na
H ₂ O	water	
NH_3	ammonia	
NO_2	nitrogen dioxide	;
N_2O	dinitrogen mono	oxide
N_2O_4	dinitrogen <mark>tetro</mark>	<mark>xide</mark>
P_4O_6	tetraphosphorus	s <mark>hexoxide</mark>
Cl_2O_6	dichlorine hexox	kide
PCl ₃	phosphorus tric	hloride
PCI_5	phosphorus per	ntachloride

disulfur dichloride tetraphosphorus trisulfide carbon disulfide sulfur trioxide

$$S_2Cl_2$$

 P_4S_3
 CS_2
 SO_3

mon name: hydrogen sulfide ame: nitric oxide

nitrogen dioxide

Chlorine monofluoride

Boron trifluoride

Hydrogen selenide Or dihydrogen selenide

 $GaBr_3$ $GeBr_4$ $CaBr_2$ $Hg_2(NO_2)_2.H_2O$ Gallium (III) bromide Germanium tetrabromide Calcium bromide Mercury(I) nitrite monohydrate

Acids and Corresponding Anions

Acid Suffix
-ic
-OUS

Table 2.8	Some Oxoanions	and Their Corres	ponding Oxoacids
-----------	----------------	------------------	------------------

Oxoanion		Oxoacid		
CO ₃ ²⁻	Carbonate ion	H_2CO_3	Carbonic acid	
NO_2^-	Nitrite ion	HNO ₂	Nitrous acid	
NO ₃ ⁻	Nitrate ion	HNO ₃	Nitric acid	
PO4 ³⁻	Phosphate ion	H ₃ PO ₄	Phosphoric acid	
SO3 ²⁻	Sulfite ion	H_2SO_3	Sulfurous acid	
SO4 ²⁻	Sulfate ion	H_2SO_4	Sulfuric acid	
C10-	Hypochlorite ion	HClO	Hypochlorous acid	
ClO ₂ ⁻	Chlorite ion	HClO ₂	Chlorous acid	
ClO ₃ ⁻	Chlorate ion	HClO ₃	Chloric acid	22
ClO ₄ ⁻	Perchlorate ion	HClO ₄	Perchloric acid	

(Q)Selenium has an oxoacid, H_2 SeO₄, called selenic acid. What is the formula and name of the corresponding anion? Selenate SeO₄²⁻

Exercise 2.10 What are the name and formula of the anion corresponding to perbromic acid, $HBrO_4$?

BrO₄⁻ perbromate

Chemical Reactions: Equations Example 2.12 Balancing Simple Equations

Balance first the atoms for elements that occur in only one substance on each side of the equation.

(a) $H_3PO_3 \rightarrow H_3PO_4 + PH_3$

(b) Ca + H₂O \rightarrow Ca(OH)₂ + H₂

(c) $Fe_2(SO_4)_3 + NH_3 + H_2O \rightarrow Fe(OH)_3 + (NH_4)_2SO_4$

Exercise 2.13

Find the coefficients that balance the following equations.

a. $O_2 + PCI_3 \rightarrow POCI_3$

b. $P_4 + N_2 O \rightarrow P_4 O_6 + N_2$

c. $As_2S_3 + O_2 \rightarrow As_2O_3 + SO_2$

d. $Ca_3(PO_4)_2 + H_3PO_4 \rightarrow Ca(H_2PO_4)_2$

Examples:

(Q)When the following equation is balanced and written with the smallest whole number coefficients, what is the coefficient of AI? $Fe_3O_4 + AI \rightarrow AI_2O_3 + Fe$

(Q) When the following equation is balanced and written with the smallest whole number coefficients, what is the sum of coefficients of AI and Fe?

$$Fe_3O_4 + AI \rightarrow AI_2O_3 + Fe$$

(Q) When the following equation is balanced and written with the smallest whole number coefficients, what is the sum of all coefficients?

 $Fe(OH)_3 + 3HNO_3 \longrightarrow Fe(NO_3)_3 + 3H_2O$