Calculations with Chemical

 Formulas and EquationsGeneral
Chemistry

3.1 Molecular Weight and Formula Weight

 molecular weight (MW) of a substance is: the sum of the atomic weights of all the atoms in a molecule of the substance. Example: $\mathrm{H}_{2} \mathrm{O}$, is 18.0 amu $(2 \times 1.0 \mathrm{amu}+16.0 \mathrm{amu})=18 \mathrm{amu}$formula weight (FW) of a substance is: the sum of the atomic weights of all atoms in a formula unit of the compound, whether molecular or not.
Example: NaCl , has a formula weight of 58.44 amu $(22.99 \mathrm{amu}+35.45 \mathrm{amu})=58.44 \mathrm{amu}$

Main-Group Elements
Main-Group Elements

Example 3.1 Calculating the Formula Weight from a Formula Calculate the formula weight of each of the following to three significant figures, using a table of atomic weights (AW):
a. chloroform, CHCl_{3}
$1 \times \mathrm{AM}$ of $\mathrm{C}=$
b. iron(III) sulfate, $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
$1 \times \mathrm{AM}$ of $\mathrm{H}=$
$3 \times \mathrm{AM}$ of $\mathrm{Cl}=3 \times 35.45 \mathrm{amu}=106.4 \mathrm{amu}$
FM of $\mathrm{CHCl}_{3}=\quad 119.4 \mathrm{amu}$

$$
\begin{aligned}
& 2 \times \mathrm{AM} \text { of } \mathrm{Fe}= 2 \times 55.8 \mathrm{amu}=111.6 \mathrm{amu} \\
& 3 \times \mathrm{AM} \text { of } \mathrm{S}=3 \times 32.1 \mathrm{amu}= 96.3 \mathrm{amu} \\
& 3 \times 4 \times \mathrm{AM} \text { of } \mathrm{O}=12 \times 16.00 \mathrm{amu}=\frac{192.0 \mathrm{amu}}{399.9 \mathrm{amu}} \\
&{\mathrm{FM} \mathrm{of} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}}=
\end{aligned}
$$

3.2 The Mole Concept

The Mole (mol): A unit to count numbers of particles
A mole (symbol mol) is defined as the quantity of a given substance that contains as many molecules or
 formula units as the number of atoms in exactly 12 g of carbon-12
$1 \mathrm{~mol}=N_{A}=6.0221415 \times 10^{23}=$ Avogadro's number
1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ contains $6.02 \times 10^{23} \mathrm{Na}_{2} \mathrm{CO}_{3}$ units
1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ contains $2 \times 6.02 \times 10^{23} \mathrm{Na}^{+}$ions
1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ contains $6.02 \times 10^{23} \mathrm{CO}_{3}{ }^{2-}$ ions
molar mass of a substance is the mass of one mole of the substance.
C has a molar mass of exactly $12 \mathrm{~g} / \mathrm{mol}$,
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ has a molar mass of exactly $46.1 \mathrm{~g} / \mathrm{mol}$

```
For any element atomic mass (amu) = molar mass (grams)
```

> Mole Calculations
(Q) A chemist determines from the amounts of elements that $0.0654 \mathrm{~mol} \mathrm{ZnI}_{2}$ can form. How many grams of zinc iodide is this? molar mass of ZnI_{2} is $319 \mathrm{~g} / \mathrm{mol}$

Number of moles $=\operatorname{mass}(\mathrm{g}) /$ molar mass
(Q)In a preparation rxn., 45.6 g of lead(II) chromate is obtained as a precipitate. How many moles of PbCrO_{4} is this? molar mass of $\mathrm{PbCrO}_{4}=323 \mathrm{~g} / \mathrm{mol}$
(Q) How many molecules are there in a 3.46-g sample of hydrogen chloride, HCl ?
(Q) How many S atoms are there in 16.3 g of S ?

Example 3.3 Calculating the Mass of an Atom or Molecule a. What is the mass in grams of one chlorine atom, Cl ?
b. What is the mass in grams of one HCl molecule?
(Q) How much, in grams, do 8.85×10^{24} atoms of zinc weigh? A. $3.49 \times 10^{49} \mathrm{~g}$
B. 961 g
C. 4.45 g
D. $5.33 \times 10^{47} \mathrm{~g}$
E. 1.47 g
8.85×10^{24} atomis $\times\left(\frac{1 \mathrm{not}}{6.022 \times 10^{23} \text { atoms }}\right) \times\left(\frac{65.41 \mathrm{~g} \mathrm{Zn}}{1 \mathrm{~mol}}\right)$
$=961 \mathrm{~g} \mathrm{Zn}$
(Q) How many hydrogen atoms are present in 25.6 g of urea $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}\right]$? molar mass of urea $=60.06 \mathrm{~g} / \mathrm{mol}$.

grams of urea \longrightarrow moles of urea \longrightarrow moles of $\mathrm{H} \longrightarrow$ atoms of H

$$
25.6 \mathrm{~g}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}}{60.06 \mathrm{~g}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}} \times \frac{4 \mathrm{moth}}{1 \mathrm{~mol}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}} \times \frac{6.022 \times 10^{23} \mathrm{H} \text { atoms }}{1 \text { mot }}
$$

$=1.03 \times 10^{24} \mathrm{H}$ atoms
(Q) Calculate the number of moles of calcium in 2.53 moles of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
A. 2.53 mol Ca
B. 0.432 mol Ca
C. 3.00 mol Ca
D. 7.59 mol Ca
E. 0.843 mol Ca
2.53 moles of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=$? mol Ca $3 \mathrm{~mol} \mathrm{Ca} \Leftrightarrow 1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$2.53 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{RQ}_{4}\right)_{2}\left(\frac{3 \mathrm{molCa}}{1 \mathrm{molCa}_{3}\left(\mathrm{PO}_{4}\right)_{2}}\right)$
$=7.59 \mathrm{~mol} \mathrm{Ca}$
(Q) A sample of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, is found to contain 10.8 moles of sodium. How many moles of oxygen atoms (O) are present in the sample?
A. 10.8 mol O
B. 7.20 mol O
C. 5.40 mol O
D. 32.4 mol O
E. 16.2 mol O
10.8 moles of $\mathrm{Na}=$? mol O
$2 \mathrm{~mol} \mathrm{Na} \Leftrightarrow 3 \mathrm{~mol} \mathrm{O}$

$$
10.8 \mathrm{motNa}\left(\frac{3 \mathrm{~mol} \mathrm{O}}{2 \mathrm{molNa}}\right)
$$

$=16.2 \mathrm{~mol} \mathrm{O}$
(Q) How many g of iron are required to use up all of 25.6 g of oxygen atoms (O) to form $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
A. 59.6 g
B. 29.8 g

mass $\mathrm{O} \rightarrow \mathrm{molO} \rightarrow$ mol Fe \rightarrow mass Fe

C. 89.4 g $25.6 \mathrm{~g} \mathrm{O} \rightarrow$? g Fe
D. 134 g
E. 52.4 g
$3 \mathrm{molO} \Leftrightarrow 2 \mathrm{~mol} \mathrm{Fe}$
$25.6 \mathrm{gQ} \times\left(\frac{1 \mathrm{motQ}}{16.0 \mathrm{gQ}}\right) \times\left(\frac{2 \mathrm{motFe}}{3 \mathrm{mota}}\right) \times\left(\frac{55.845 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{motFe}}\right)$
$=59.6 \mathrm{~g} \mathrm{Fe}$
(Q) Silver is often found in nature as the ore, argentite $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$. How many grams of pure silver can be obtained from a 836 g rock of argentite?
A. 7.75 g mass $\mathbf{A g}_{\mathbf{2}} \mathbf{S} \rightarrow \mathbf{m o l} \mathbf{A g}_{\mathbf{2}} \mathbf{S} \rightarrow \mathbf{m o l} \mathbf{A g} \rightarrow$ mass $\mathbf{A g}$
B. 728 g $836 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S} \rightarrow$? g Ag
C. 364 g
D. 775 g
$1 \mathrm{~mol}_{\mathrm{Ag}_{2} \mathrm{~S} \Leftrightarrow 2 \mathrm{~mol} \mathrm{Ag}}$
E. 418 g

$$
\begin{aligned}
& 836 \mathrm{~g}_{\mathrm{Ag}_{8} \mathrm{~S}} \times\left(\frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}{247.8 \mathrm{~g} \mathrm{Ag}_{\mathrm{S}} \mathrm{~S}}\right) \times\left(\frac{2 \mathrm{mok} \mathrm{Ag}_{\mathrm{g}}}{1 \mathrm{~mol} \mathrm{Ag} \mathrm{~S}}\right) \times\left(\frac{107.9 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{motAg}}\right) \\
& =728 \mathrm{~g} \mathrm{Ag}
\end{aligned}
$$

> Percentage Composition

$\%$ by mass of element $=\frac{\text { mass of element }}{\text { mass of sample }} \times 100 \%$
Example: A sample of a liquid with a mass of 8.657 g was decomposed into its elements and gave 5.217 g of carbon, 0.9620 g of hydrogen, and 2.478 g of oxygen. What is the percentage composition of this compound?

$$
\begin{aligned}
& \frac{\mathrm{g} \mathrm{C}}{\text { g total }} \doteqdot 100 \%=\frac{5.217 \mathrm{~g} \mathrm{C}}{8.657 \mathrm{~g}} \times 100 \%=60.26 \% \mathrm{C} \\
& \frac{\mathrm{~g} \mathrm{H}}{\mathrm{~g} \mathrm{total}} \div 100 \%=\frac{0.9620 \mathrm{~g} \mathrm{H}}{8.657 \mathrm{~g}} \times 100 \%=11.11 \% \mathrm{H} \\
& \frac{\mathrm{~g} \mathrm{O}}{\text { g total }} \doteqdot 100 \%=\frac{2.478 \mathrm{~g} \mathrm{O}}{8.657 \mathrm{~g}} \times 100 \%=28.62 \% \mathrm{O}
\end{aligned}
$$

Sum of percentages: 100%
(Q) A sample was analyzed and found to contain 0.1417 g nitrogen and 0.4045 g oxygen.
What is the percentage composition of this compound?
Total sample mass $=0.1417 \mathrm{~g}+0.4045 \mathrm{~g}=0.5462 \mathrm{~g}$
\% Composition of \mathbf{N}
$\left(\frac{\mathrm{g} \mathrm{N}}{\mathrm{g} \text { total }}\right) \times 100 \%=\left(\frac{0.1417 \mathrm{~g} \mathrm{~N}}{0.5462 \mathrm{~g}}\right) \times 100 \%=25.94 \% \mathrm{~N}$
\% Composition of 0
$\left(\frac{\mathrm{g} \mathrm{O}}{\mathrm{g} \text { total }}\right) \times 100 \%=\left(\frac{0.4045 \mathrm{~g} \mathrm{O}}{0.5462 \mathrm{~g}}\right) \times 100 \%=74.06 \% 0$
(Q) a.Calculate the mass percentages of the elements in formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)$ molar mass $=30 \mathrm{~g} / \mathrm{mol}$

$$
\begin{aligned}
& \% \mathbf{C}=\frac{12.0 \mathrm{~g}}{30.0 \mathrm{~g}} \times 100 \%=\mathbf{4 0 . 0} \% \\
& \% \mathbf{H}=\frac{2 \times 1.01 \mathrm{~g}}{30.0 \mathrm{~g}} \times \mathbf{1 0 0} \%=\mathbf{6 . 7 3} \% \\
& \% \mathbf{O}=16 / 30 \times 100 \%=53.3 \% \\
& \% \mathbf{O}=100 \%-(40.0 \%+6.73 \%)=\mathbf{5 3 . 3} \%
\end{aligned}
$$

b. How many grams of carbon are there in 83.5 g of $\mathrm{CH}_{2} \mathrm{O}$?
$\mathrm{CH}_{2} \mathrm{O}$ is $40.0 \% \mathrm{C}$, so the mass of carbon in $83.5 \mathrm{~g} \mathrm{CH}_{2} \mathrm{O}$ is: $83.5 \mathrm{~g} \times 0.400=33.4 \mathrm{~g}$
(Q) Calculate the mass percentages of the elements in $\mathrm{H}_{3} \mathrm{PO}_{4}$ molar mass $=97.99 \mathrm{~g} / \mathrm{mol}$

$$
\begin{aligned}
& \% \mathrm{H}=\frac{3(1.008 \mathrm{~g}) \mathrm{H}}{97.99 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}} \times 100 \%=3.086 \% \\
& \% \mathrm{P}=\frac{30.97 \mathrm{~g} \mathrm{P}}{97.99 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}} \times 100 \%=31.61 \% \\
& \% \mathrm{O}=\frac{4(16.00 \mathrm{~g}) \mathrm{O}}{97.99 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}} \times 100 \%=65.31 \%
\end{aligned}
$$

$>$ Determining Empirical and Molecular Formulas

Empirical Formula

- Simplest ratio of atoms of each element in compound
- Obtained from experimental analysis of compound Molecular Formula
- Exact composition of one molecule
- Exact whole number ratio of atoms of each element in molecule
glucose

$$
\text { Molecular formula } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

Empirical formula $\mathrm{CH}_{2} \mathbf{O}$

$>$ Three Ways to Calculate Empirical Formulas

1. From Masses of Elements
e.g., 2.448 g sample of which 1.771 g is Fe and 0.677 g is O .
2. From Percentage Composition
e.g., 43.64\% P and 56.36\% O
3. From Combustion Data

- Given masses of combustion products
e.g., The combustion of a 5.217 g sample of a compound of
C, H, and O in pure oxygen gave
$7.406 \mathrm{~g} \mathrm{CO}_{2}$ and 4.512 g of $\mathrm{H}_{2} \mathrm{O}$

1. Empirical Formula from Mass Data

When a 0.1156 g sample of a compound was analyzed, it was found to contain 0.04470 g of C , 0.01875 g of H , and 0.05215 g of N . Calculate the empirical formula of this compound.

Step 1: Calculate moles of each substance

$$
\begin{aligned}
& 0.04470 \mathrm{~g} 6 \times \frac{1 \mathrm{molC}}{12.011 \mathrm{gG}}=3.722 \times 10^{-3} \mathrm{~mol} \mathrm{C} \\
& 0.01875 \mathrm{gH} \times \frac{1 \mathrm{molH}}{1.008 \mathrm{gH}}=1.860 \times 10^{-2} \mathrm{~mol} \mathrm{H} \\
& 0.05215 \mathrm{gN} \times \frac{1 \mathrm{~mol}}{14.0067 \mathrm{gN}}=3.723 \times 10^{-3} \mathrm{~mol} \mathrm{~N}
\end{aligned}
$$

Step 2: Select the smallest number of moles

- Smallest is 3.722×10^{-3} mole

Mole ratio Integer ratio

- $\mathrm{C}=\frac{3.722 \times 10^{-3} \mathrm{~mol} \mathrm{C}}{3.722 \times 10^{-3} \mathrm{~mol} \mathrm{C}}=1.000=1$
- $\mathrm{H}=\frac{1.860 \times 10^{-2} \mathrm{~mol} \mathrm{H}}{3.722 \times 10^{-3} \mathrm{~mol} \mathrm{C}}=4.997=5$
- $\mathrm{N}=\frac{3.723 \times 10^{-3} \mathrm{~mol} \mathrm{~N}}{3.722 \times 10^{-3} \mathrm{~mol} \mathrm{C}}=1.000=1$

Step 3: Divide all number of moles by the smallest one
Empirical formula $=\mathbf{C H}_{5} \mathbf{N}$

2. Empirical Formula from Percentage Composition

Calculate the empirical formula of a compound whose percentage composition data is $43.64 \% \mathrm{P}$ and $56.36 \% \mathrm{O}$. If the molar mass is determined to be $283.9 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula?

Step 1: Assume 100 g of compound

- 43.64 g P
$1 \mathrm{~mol} P=30.97 \mathrm{~g}$
- 56.36 g O
$1 \mathrm{~mol} \mathrm{O}=16.00 \mathrm{~g}$

$$
\begin{aligned}
& 43.64 \mathrm{gR} \times \frac{1 \mathrm{molP}}{30.97 \mathrm{gR}}=1.409 \mathrm{~mol} \mathrm{P} \\
& 56.36 \mathrm{gQ} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{gQ}}=3.523 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Step 2: Divide by smallest number of moles
$1.409 \mathrm{~mol} P$
$\frac{1.409 \mathrm{molP}}{1.409 \mathrm{molP}}=1.000$
$\frac{3.523 \mathrm{~mol} \mathrm{O}}{1.409 \mathrm{~mol} \mathrm{P}}=2.500$
Step 3: Multiple to get integers
$1.000 \times 2=2$
$2.500 \times 2=5$
Empirical formula $=\mathbf{P}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}$
(Q) Ascorbic acid (vitamin C) is composed of 40.92 percent carbon (C), 4.58 percent hydrogen (H), and 54.50 percent oxygen (O) by mass. Determine its empirical formula.

Assume you have 100 g .

$$
n_{C}=40.92 \mathrm{gC} \times \frac{1 \mathrm{molc}}{12.01 \mathrm{gC}^{C}}=3.407 \mathrm{~mol} \mathrm{C}
$$

$$
n_{\mathrm{H}}=4.58 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=4.54 \mathrm{~mol} \mathrm{H} \quad \rightarrow \text { formula } \mathrm{C}_{3.407} \mathrm{H}_{4.54} \mathrm{O}_{3.406}
$$

$$
n_{0}=54.50 \mathrm{~g} \sigma \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \sigma}=3.406 \mathrm{~mol} \mathrm{O}
$$

$\mathrm{C}: \frac{3.407}{3.406} \approx 1 \quad \mathrm{H}: \frac{4.54}{3.406}=1.33 \quad \mathrm{O}: \frac{3.406}{3.406}=1$
\rightarrow formula $\mathrm{C}_{1} \mathrm{H}_{1.33} \mathrm{O}_{1} \quad \mathrm{X} 3 \rightarrow$ formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$

3. Empirical Formulas from Indirect Analysis: (Combustion analysis)

Combustion Analysis Compounds containing carbon, hydrogen, and oxygen, can be burned completely in pure oxygen gas.
Only carbon dioxide and water are produced e.g., Combustion of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$

$$
\begin{aligned}
& 2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow \\
& 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Modern CHN analysis

- Carbon dioxide and water are separated and weighed separately
- All C ends up as CO_{2}
- All H ends up as $\mathrm{H}_{2} \mathrm{O}$
- Mass of C can be derived from amount of CO_{2}
- mass $\mathrm{CO}_{2} \rightarrow \mathrm{~mol} \mathrm{CO}_{2} \rightarrow \mathrm{~mol} \mathrm{C} \rightarrow$ mass C
- Mass of H can be derived from amount of $\mathrm{H}_{2} \mathrm{O}$
- mass $\mathrm{H}_{2} \mathrm{O} \rightarrow$ mol $\mathrm{H}_{2} \mathrm{O} \rightarrow$ mol $\mathrm{H} \rightarrow$ mass H
- Mass of oxygen is obtained by difference
- mass $\mathrm{O}=$ mass sample - (mass $\mathrm{C}+$ mass H)
(Q) The combustion of a 5.217 g sample of a compound of C , H , and O in pure oxygen gave $7.406 \mathrm{~g} \mathrm{CO}_{2}$ and 4.512 g of $\mathrm{H}_{2} \mathrm{O}$. Calculate the empirical formula of the compound.

1. Calculate mass of C from mass of CO_{2}. mass $\mathrm{CO}_{2} \rightarrow$ mole $\mathrm{CO}_{2} \rightarrow$ mole $\mathrm{C} \rightarrow$ mass C

$$
7.406 \mathrm{~g} \mathrm{CO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}\right)\left(\frac{1 \mathrm{molC}}{1 \mathrm{~mol} \mathrm{CO}_{2}}\right)\left(\frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{molC}}\right)=2.021 \mathrm{~g} \mathrm{C}
$$

2. Calculate mass of H from mass of $\mathrm{H}_{2} \mathrm{O}$.
mass $\mathrm{H}_{2} \mathrm{O} \rightarrow$ mol $\mathrm{H}_{2} \mathrm{O} \rightarrow$ mol H \rightarrow mass H

$$
4.512 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\left(\frac{1 \mathrm{molH}_{2} \mathrm{O}}{18.015 \mathrm{gH}_{2} \mathrm{O}}\right)\left(\frac{2 \mathrm{molH}}{1 \mathrm{molH}_{2} \mathrm{O}}\right)\left(\frac{1.008 \mathrm{gH}}{1 \mathrm{molH}}\right)=0.5049 \mathrm{~g} \mathrm{H}
$$

3. Calculate mass of O from difference.

$$
5.217 \mathrm{~g} \text { sample }-2.021 \mathrm{~g} \mathrm{C}-0.5049 \mathrm{~g} \mathrm{H}=2.691 \mathrm{~g} \mathrm{O}
$$

4. Calculate mol of each element

$$
\mathrm{molC}=\frac{\mathrm{gC}}{\mathrm{MMC}}=\frac{2.021 \mathrm{~g}}{12.011 \mathrm{~g} / \mathrm{mol}} \quad=0.1683 \mathrm{~mol} \mathrm{C}
$$

$$
\mathrm{molH}=\frac{\mathrm{gH}}{\mathrm{MMH}}=\frac{0.5049 \mathrm{~g}}{1.008 \mathrm{~g} / \mathrm{mol}}
$$

$$
=0.5009 \mathrm{~mol} \mathrm{H}
$$

$$
\mathrm{molO}=\frac{\mathrm{g} \mathrm{O}}{\mathrm{MM} \mathrm{O}}=\frac{2.691 \mathrm{~g}}{15.999 \mathrm{~g} / \mathrm{mol}} \quad=0.1682 \mathrm{~mol} \mathrm{O}
$$

- Preliminary empirical formula

$$
\mathrm{C}_{0.1683} \mathrm{H}_{0.5009} \mathrm{O}_{0.1682}
$$

5. Calculate mol ratio of each element

$$
\mathrm{C}_{0.1683} \mathrm{H}_{0.5009} \mathrm{O}_{0.1682} \frac{\mathrm{C}_{1.00} \mathrm{H}_{2.97} \mathrm{O}_{1.00}}{0.1682}
$$

Empirical Formula $=\mathrm{CH}_{3} \mathrm{O}$
(Q) The combustion of a 13.660 g sample of a compound of C , H , and S in pure oxygen gave $19.352 \mathrm{~g} \mathrm{CO}_{2}$ and 11.882 g of $\mathrm{H}_{2} \mathrm{O}$. Calculate the empirical formula of the compound.
A. $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~S}$
B. $\mathrm{CH}_{3} \mathrm{~S}$
C. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}$
(1) mass $\mathrm{CO}_{2} \rightarrow$ mole $\mathrm{CO}_{2} \rightarrow$ mole $\mathrm{C} \rightarrow$ mass C
(2) mass $\mathrm{H}_{2} \mathrm{O} \rightarrow$ mole $\mathrm{H}_{2} \mathrm{O} \rightarrow$ mole $\mathrm{H} \rightarrow$ mass H (3) Calculate mass of S from difference
D. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}_{3}$
E. $\mathrm{CH}_{3} \mathrm{~S}_{2}$

$$
\begin{aligned}
& 19.352 \mathrm{~g} \mathrm{CO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}\right)\left(\frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}\right)=5.281 \mathrm{~g} \mathrm{C} \\
& 11.882 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}_{1}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}\right)=1.330 \mathrm{~g} \mathrm{H}
\end{aligned}
$$

13.66 g sample $-5.281 \mathrm{~g} \mathrm{C}-1.330 \mathrm{~g} \mathrm{H}=7.049 \mathrm{~g} \mathrm{~S}$

$$
\begin{aligned}
& \mathrm{mol} \mathrm{C}=\frac{\mathrm{g} \mathrm{C}}{\mathrm{MMC}}=\frac{5.281 \mathrm{~g}}{12.011 / \mathrm{mol}}=0.4497 \mathrm{~mol} \mathrm{C} \\
& \mathrm{~mol} \mathrm{H}=\frac{\mathrm{g} \mathrm{H}}{\mathrm{MM} \mathrm{H}}=\frac{1.330 \not \approx}{1.008 \not \& / \mathrm{mol}}=1.319 \mathrm{~mol} \mathrm{H} \\
& \mathrm{~mol} \mathrm{~S}=\frac{\mathrm{g} \mathrm{~S}}{\mathrm{MMS}}=\frac{7.049 \%}{32.065} \frac{\rho / \mathrm{mol}}{}=0.2198 \mathrm{~mol} \mathrm{~S} \\
& \text { - Preliminary empirical formula } \\
& \text { - } \mathrm{C}_{0.4497} \mathrm{H}_{1.319} \mathrm{~S}_{0.2198} \\
& \mathrm{C}_{\frac{0.4497}{}}^{0.2198} \mathrm{H}_{0.319}^{0.2198} \mathrm{O}_{\frac{0.2198}{0.2198}}=\mathrm{C}_{2.03} \mathrm{H}_{6.00} \mathrm{~S}_{1.00}
\end{aligned}
$$

Empirical Formula $=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}$
> Determining Molecular Formula from empirical formula
-In some cases molecular and empirical formulas are the same -When they are different, the subscripts of molecular formula are integer multiples of those in empirical formula

- If empirical formula is $A_{x} B_{y}$
- Molecular formula will be $\boldsymbol{A}_{(n \times x)} \boldsymbol{B}_{(n \times y)}$
(Q)The empirical formula of hydrazine is NH_{2}, and its molecular mass is 32.0. What is its molecular formula?

Atomic masses: $\mathrm{N}=14.007 ; \mathrm{H}=1.008 ; \mathrm{O}=15.999$
Molar mass of $\mathrm{NH}_{2}=(1 \times 14.01) \mathrm{g}+(2 \times 1.008) \mathrm{g}=16.017 \mathrm{~g}$

$$
\begin{aligned}
& \mathrm{n}=(32.0 / 16.02)=2 \\
& \left(\mathrm{NH}_{2}\right) \times 2=\mathrm{N}_{2} \mathrm{H}_{4}
\end{aligned}
$$

$>$ Stoichiometry:Quantitative Relations in Chemical Reactions

Molar Interpretation of a Chemical Equation

$$
\begin{aligned}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) & \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
\mathrm{N}_{2}+3 \mathrm{H}_{2} & \longrightarrow 22 \mathrm{NH}_{3} \\
1 \text { molecule } \mathrm{N}_{2}+3 \text { molecules } \mathrm{H}_{2} & \longrightarrow 2 \text { molecules } \mathrm{NH}_{3} \\
1 \text { mol } \mathrm{N}_{2}+3 \mathrm{~mol} \mathrm{H} & \longrightarrow 2 \text { mol } \mathrm{NH}_{3} \\
28.0 \mathrm{~g} \mathrm{~N}_{2}+3 \times 2.02 \mathrm{~g} \mathrm{H}_{2} & \longrightarrow 2 \times 17.0 \mathrm{~g} \mathrm{NH}_{3}
\end{aligned}
$$

(molecular interpretation) (molar interpretation) (mass interpretation)

3.7 Amounts of Substances in a Chemical Reaction

Example 3.13

Relating the Quantity of Reactant to Quantity of Product In the following reaction:
$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}(g) \rightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(g)$
How many grams of $\mathrm{Fe}(\mathrm{s})$ can be produced from $1.00 \mathrm{~kg} \mathrm{Fe}_{2} \mathrm{O}_{3}$? Molar masses are: $\mathrm{Fe}=55.8 \mathrm{~g} / \mathrm{mol}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}=160 \mathrm{~g} / \mathrm{mol}$

Solution The calculation is as follows:

$$
1.00 \times 10^{3} \mathrm{gFe}_{2} \mathrm{O}_{3} \times \frac{1 \mathrm{molFe}_{2} \mathrm{O}_{3}}{160 \mathrm{gFe}_{2} \mathrm{O}_{3}} \times \frac{2 \mathrm{molFe}}{1 \mathrm{molFe}_{2} \mathrm{O}_{3}} \times \frac{55.8 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{molFe}}=\mathbf{6 9 8} \mathbf{g ~ F e}
$$

Example 3.14

Relating the Quantities of Two Reactants (or Two Products)
In the following reaction:
$4 \mathrm{HCl}(a q)+\mathrm{MnO}_{2}(s) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{MnCl}_{2}(a q)+\mathrm{Cl}_{2}(g)$ How many grams of HCl react with 5.00 g of MnO_{2}, according to this equation?
$5.00 \mathrm{~g} \mathrm{MnO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{MnO}_{2}}{86.9 \mathrm{~g} \mathrm{MnO}_{2}} \times \frac{4 \mathrm{moH} \mathrm{HCl}}{1 \mathrm{~mol}_{\mathrm{MnO}_{2}}} \times \frac{36.5 \mathrm{~g} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{HCl}}=8.40 \mathrm{~g} \mathrm{HCl}$
Exercise 3.16 oxygen can be prepared by heating mercury(II) oxide, HgO . Mercury metal is the other product. If 6.47 g of oxygen is collected, how many grams of mercury metal are also produced? $2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}$

$$
6.47 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Hg}}{1 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{200.59 \mathrm{~g} \mathrm{Hg}}{1 \mathrm{~mol} \mathrm{Hg}}=81.11=81.1 \mathrm{~g} \mathrm{Hg}
$$

How many grams of $\mathrm{Al}_{2} \mathrm{O}_{3}$ are produced when 41.5 g Al react?

$$
2 \mathrm{Al}(s)+\mathrm{Fe}_{2} \mathrm{O}_{3}(s) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(s)+2 \mathrm{Fe}(/)
$$

A. 78.4 g
B. 157 g
C. 314 g
D. 22.0 g
E. 11.0 g

$$
\begin{aligned}
& =78.4 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}
\end{aligned}
$$

How many grams of sodium dichromate are required to produce 24.7 g iron(III) chloride from the following reaction?

$$
\begin{aligned}
& 14 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{FeCl}_{2} \rightarrow \\
& 2 \mathrm{CrCl}_{3}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{FeCl}_{3}+2 \mathrm{NaCl}
\end{aligned}
$$

A. $6.64 \mathrm{~g} \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$\begin{aligned} & \text { C. } 8.51 \mathrm{~g} \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\ & \text { D. } 39.9 \mathrm{~g} \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\end{aligned} \quad\left(\frac{1 \overline{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}}{6 \mathrm{molFCl}_{3}}\right) \times\left(\frac{262.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{1 \overline{\mathrm{~mol} \mathrm{Na}} 2_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}\right)$
E. $8.04 \mathrm{~g} \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

$$
=6.64 \mathrm{~g} \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}
$$

3.8 Limiting Reactant; Theoretical and Percentage Yields

 Example 3.15 Calculating with a Limiting Reactant (Involving Moles)Zinc metal reacts with hydrochloric acid by the following reaction:
$\mathrm{Zn}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(g)$
If 0.30 mol Zn is added to a solution containing 0.52 mol HCl , how many moles of H_{2} are produced?
3.91 Potassium superoxide, KO_{2}, is used in rebreathing gas masks to generate oxygen. $4 \mathrm{KO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{KOH}(\mathrm{s})+3 \mathrm{O}_{2}(g)$ If a reaction vessel contains $0.25 \mathrm{~mol} \mathrm{KO}_{2}$ and $0.15 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$, what is the limiting reactant? How many moles of oxygen can be produced?

Calculating with a Limiting Reactant (Involving Masses)

 3.96 Hydrogen cyanide, HCN, is prepared from ammonia, air, and natural gas $\left(\mathrm{CH}_{4}\right)$ by the following process: $2 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g)+2 \mathrm{CH}_{4}(g) \rightarrow 2 \mathrm{HCN}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$ If a reaction vessel contains $11.5 \mathrm{~g} \mathrm{NH}_{3}, 12.0 \mathrm{~g} \mathrm{O}_{2}$, and 10.5 g CH_{4}, what is the maximum mass in grams of hydrogen cyanide that could be made, assuming the reaction goes to completion as written?
$>$ Theoretical yield and percentage yield

$$
\text { Percentage yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%
$$

3.97 Aspirin (acetylsalicylic acid) is prepared by heating salicylic acid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$, with acetic anhydride, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$. The other product is acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$.
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \rightarrow \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
What is the theoretical yield (in grams) of aspirin, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$, when 2.00 g of salicylic acid is heated with 4.00 g of acetic anhydride? If the actual yield of aspirin is 1.86 g , what is the percentage yield?
(Q) When 6.40 g of $\mathrm{CH}_{3} \mathrm{OH}$ was mixed with 10.2 g of O_{2} and ignited, 6.12 g of CO_{2} was obtained. What was the percentage yield of CO_{2} ?
$2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MM}(\mathrm{g} / \mathrm{mol})(32.04)(32.00)$ (44.01) (18.02)
A. 6.12%
B. 8.79%
$6.40 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{32.04 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}} \times \frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}$
$=9.59 \mathrm{~g} \mathrm{O}_{2}$ needed; $\mathrm{CH}_{3} \mathrm{OH}$ limiting
D. 142%
E. $69.6 \% \quad 6.40 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{32.04 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}} \times \frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}$
$=8.79 \mathrm{~g} \mathrm{CO}_{2}$ in theory

$$
\frac{6.12 \mathrm{~g} \mathrm{CO}_{2} \text { actual }}{8.79 \mathrm{~g} \mathrm{CO}_{2} \text { theory }} 100 \%=69.6 \%
$$

