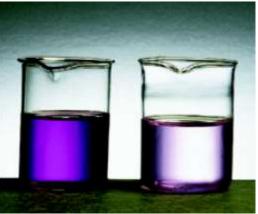
EBBING - GAMMON

Chemical Reactions

General Chemistry ELEVENTH EDITION

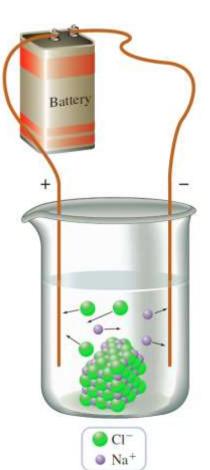
©2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.


Ions in Aqueous Solution

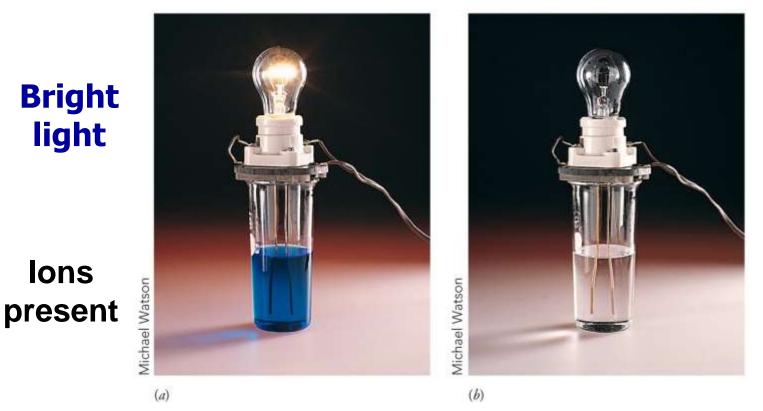
A *solution* is a homogenous mixture of 2 or more substances.

The **solute** is (are) the substance(s) present in the smaller amount(s).

The *solvent* is the substance present in the larger amount.


<u>Solution</u>	<u>Solvent</u>	<u>Solute</u>
Soft drink (I)	H ₂ O	Sugar, CO ₂
Air (<i>g</i>)	N ₂	O ₂ , Ar, CH ₄
Soft solder (s)	Pb	Sn

aqueous solutions of KMnO₄

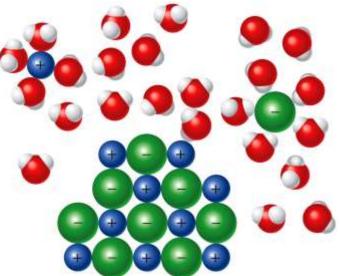

4.1 Ionic Theory of Solutions and Solubility Rules

- ✓ Arrhenius proposed the *ionic theory of solutions* to account for the conductivity of water solutions.
- "Certain substances produce freely moving ions when they dissolve in water, and these ions conduct an electric current"
- ✓ Pure H₂O doesn't contain ions → not conductive ✓ An aqueous solution of ions (aq) is conductive
- Electrolytes and Nonelectrolytes:
- ✓ An electrolyte is a substance that dissolves in water to give an electrically conducting solution.
 ✓ ionic solids that dissolve in water are electrolytes.
 ✓ Not all electrolytes are ionic substances
 ✓ molecular substances that dissolve in water to form ions are electrolytes

Electrolytes in Aqueous Solution

- Ionic compounds conduct electricity
- <u>Generally</u> Molecular compounds don't conduct electricity. Why?

No light

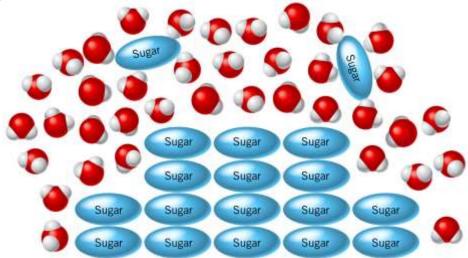

Molecular

CuSO₄ and water

Sugar and water

Ionic Compounds (Salts) in Water

- Water molecules arrange themselves around ions and remove them from lattice.
- Dissociation
- Salts break apart into ions when entering solution
 Separated ions
 - Hydrated
 - Conduct electricity
- Note: Polyatomic ions remain intact
 - e.g., $KIO_3 \rightarrow K^+ + IO_3^-$



 $NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$

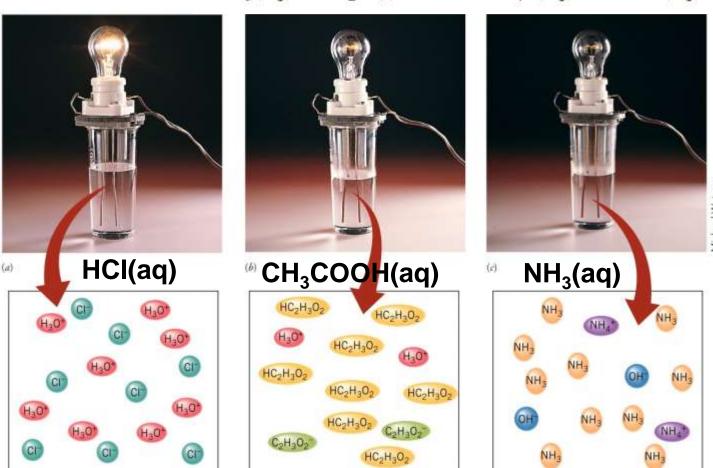
- (Q)How many ions form on the dissociation of Na_3PO_4 ?
- (Q)How many ions form on the dissociation of $Al_2(SO_4)_3$?

Molecular Compounds In Water

- When molecules dissolve in water
 - Solute particles are surrounded by water
 - Molecules do not dissociate

Electrical Conductivity

Electrolyte


- -Solutes that yield electrically conducting solutions
- -Separate into ions when enter into solution Strong electrolyte
- -Electrolyte that dissociates 100% in water
- -Yields aqueous solution that conducts electricity
- –lonic compounds, **e.g.**, NaCl, KNO₃
- –Strong acids and bases, **e.g.**, HCIO₄, HCI **Non-electrolyte**

"A nonelectrolyte is a substance that dissolves in water to give a nonconducting or very poorly conducting solution –Molecules remain intact in solution **e.g.**, Sugar (glucose, sucrose), Alcohol(Methanol, ethanol), Urea

	nmon Strong Acids l Bases
Strong Acids	Strong Bases
HClO ₄	LiOH
H_2SO_4	NaOH
HI	КОН
HBr	Ca(OH) ₂
HCl	Sr(OH) ₂
HNO ₃	Ba(OH) ₂

Weak electrolyte

- When dissolved in water a small percentage of molecules ionize
- Common examples are weak acids and bases
- Solutions weakly conduct electricity
- •e.g., Acetic acid (CH₃COOH), ammonia (NH₃)
- $\operatorname{HCl}(aq) \longrightarrow \operatorname{H}^+(aq) + \operatorname{Cl}^-(aq)$

 $NH_3(aq) + H_2O(l) \implies NH_4^+(aq) + OH^-(aq)$

Solubility Rules

- ✓ Soluble: NaCl, CH_3CH_2OH , CH_3OH
- ✓ Insoluble: benzene (C_6H_6), hexane (C_6H_{14})

Table 4.1	Solubility Rules for Ionic Compo	ounds	
Rule	Applies to	Statement	Exceptions
1	Li ⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺	Group 1A and ammonium compounds are soluble.	—
2	C ₂ H ₃ O ₂ ⁻ , NO ₃ ⁻	Acetates and nitrates are soluble.	
3	Cl ⁻ , Br ⁻ , I ⁻	Most chlorides, bromides, and iodides are soluble.	AgCl, Hg ₂ Cl ₂ , PbCl ₂ , AgBr, HgBr ₂ , Hg ₂ Br ₂ , PbBr ₂ , AgI, HgI ₂ , Hg ₂ I ₂ , PbI ₂
4	SO4 ²⁻	Most sulfates are soluble.	CaSO ₄ , SrSO ₄ , BaSO ₄ , Ag ₂ SO ₄ , Hg ₂ SO ₄ , PbSO ₄
5	CO3 ²⁻	Most carbonates are insoluble.	Group 1A carbonates, (NH ₄) ₂ CO ₃
6	PO ₄ ³⁻	Most phosphates are insoluble.	Group 1A phosphates, (NH ₄) ₃ PO ₄
7	S ²⁻	Most sulfides are insoluble.	Group 1A sulfides, (NH ₄) ₂ S
8	OH-	Most hydroxides are insoluble.	Group 1A hydroxides, Ca(OH) ₂ , Sr(OH) ₂ , Ba(OH) ₂

(Q)Which of the following would you expect to be strong electrolyte when placed in water? NH_4CI , $MgBr_2$, H_2O , HCI, $Ca_3(PO_4)_2$, CH_3OH

air	n-Group	ρ Elem	ents											Mai	in-Grou	p Elen	ients	
-	1 IA	·	2			н Sy	tomic nu ymbol											18 VIIIA
	1 H 1.00794	2 IIA			a dine	At At	tomic m	ass					13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 He 4.002603
	3 Li 6.941	4 Be 9.012182	_			Т	ransitio	n Meta	als				5 B 10.811	6 C 12.0107	7 N 14.0067	8 O 15.9994	9 F 18.9984032	10 Ne 2 20.1797
	11 Na 22.98976928	12 Mg 24.3050	3 ШВ	4 IVB	5 VB	6 VIB	7 VIIB /	8	9 VIIIB	10	II IB	12 IIB	13 Al 26.9815386	14 Si 28,0855	15 P 30.973762	16 S 32.065	17 Cl 35.453	18 Ar 39.948
	19 K 39.0983	20 Ca 40.078	21 Sc 44.955912	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938045	26 Fe 55.845	27 Co 58.933195	28 NI 58.6934	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83,798
5	37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 /In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
	55 Cs 132.9054519	56 Ba 137.327	71 Lu 174.967	72 Hf 178.49	73 Ta 180.94788	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.084	79 Au 196,966,569	80 Hg 200.59	81 TI 204.3833	82 Pb 207.2	83 Bi 208.98040	84 Po (209)	85 At (210)	86 Rn (222)
	87 Fr (223)	88 Ra (226)	103 Lr (262)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (272)	112 Uub (285)	113 Uut (284)	114 Uuq (289)	115 Uup (288)	116 Uuh (291)		118 Uuo (294

Example 4.1 Determine whether the following compounds are soluble or insoluble in water.

a. Hg_2CI_2 b. KI c. lead(II) nitrate

Which of the following compounds are expected to be soluble in water? a. $Ca(C_2H_3O_2)_2$ b. $FeCO_3$ c. AgCl

a. NaBr b. $Ba(OH)_2$ c. calcium carbonate d. Ag_2SO_4

4.2 Molecular and Ionic Equations

> Molecular Equation:

 $Ca(OH)_2(aq) + Na_2CO_3(aq) \longrightarrow CaCO_3(s) + 2NaOH(aq)$

Complete Ionic Equation:

 $Ca^{2+}(aq) + 2OH^{-}(aq) + 2Na^{+}(aq) + CO_{3}^{2-}(aq) \xrightarrow{\longrightarrow} CaCO_{3}(s) + 2Na^{+}(aq) + 2OH^{-}(aq)$

Net Ionic Equation: spectator ions: OH⁻ and Na⁺

 $Ca^{2+}(aq) + 2OH^{-}(aq) + 2Na^{\pm}(aq) + CO_{3}^{2-}(aq) \longrightarrow CaCO_{3}(s) + 2Na^{\pm}(aq) + 2OH^{-}(aq)$

$$\operatorname{Ca}^{2+}(aq) + \operatorname{CO}_3^{2-}(aq) \longrightarrow \operatorname{Ca}^{2+}(aq)$$

- Molecular Equation:
- $Ca(NO_3)_2(aq) + K_2CO_3(aq) \longrightarrow CaCO_3(s) + 2KNO_3(aq)$
- Complete Ionic Equation:
- $Ca^{2+}(aq) + 2N\Theta_{\overline{3}}(aq) + 2K^{\pm}(aq) + CO_{3}^{2-}(aq) \longrightarrow CaCO_{3}(s) + 2K^{\pm}(aq) + 2N\Theta_{\overline{3}}(aq)$
- > Net Ionic Equation:
- $\operatorname{Ca}^{2+}(aq) + \operatorname{CO}_3^{2-}(aq) \longrightarrow \operatorname{Ca}^{2+}(aq)$
- Example 4.2 Writing Net Ionic Equations a. $2\text{HClO}_4(aq) + Ca(OH)_2(aq) \longrightarrow Ca(ClO_4)_2(aq) + 2H_2O(l)$

 $2\mathrm{H}^{+}(aq) + 2\mathrm{Cl}\Theta_{4}^{-}(aq) + \mathrm{Ca}^{2\pm}(aq) + 2\mathrm{OH}^{-}(aq) \longrightarrow \\ \mathrm{Ca}^{2\pm}(aq) + 2\mathrm{Cl}\Theta_{4}^{-}(aq) + 2\mathrm{H}_{2}\mathrm{O}(l)$

 $\mathrm{H}^{+}(aq) + \mathrm{OH}^{-}(aq) \longrightarrow \mathrm{H}_{2}\mathrm{O}(l)$

b. $HC_2H_3O_2(aq) + NaOH(aq) \longrightarrow NaC_2H_3O_2(aq) + H_2O(l)$ $HC_2H_3O_2(aq) + Na^{\pm}(aq) + OH^{-}(aq) \longrightarrow Na^{\pm}(aq) + C_2H_3O_2^{-}(aq) + H_2O(l)$ $HC_2H_3O_2(aq) + OH^{-}(aq) \longrightarrow C_2H_3O_2^{-}(aq) + H_2O(l)$ c. $NH_3(aq) + HCl(aq) \longrightarrow NH_4Cl(aq)$

Ionic: $NH_3(aq) + H^+(aq) + CI^-(aq) \rightarrow NH_4^+(aq) + CI^-(aq)$

Net ionic: $NH_3(aq) + H^+(aq) \longrightarrow NH_4^+(aq)$

Write weak electrolytes in "molecular form"

- ✓ Many ways to make Pbl₂
- 1. $Pb(NO_3)_2(aq) + 2KI(aq) \rightarrow PbI_2(s) + 2KNO_3(aq)$
- 2. $Pb(C_2H_3O_2)_2(aq) + 2NH_4I(aq) \rightarrow PbI_2(s) + 2NH_4C_2H_3O_2(aq)$

Different starting reagents Same net ionic equation

 $Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$

Exercise 4.2 Write complete ionic and net ionic equations for each of the following molecular equations.

a. $2HNO_3(aq) + Mg(OH)_2(s) \rightarrow 2H_2O(l) + Mg(NO_3)_2(aq)$ Ionic:

 $2\mathsf{H}^{\scriptscriptstyle +}(aq) + 2\mathsf{NO}_3^{\scriptscriptstyle -}(aq) + \mathsf{Mg}(\mathsf{OH})_2(s) \rightarrow 2\mathsf{H}_2\mathsf{O}(l) + \mathsf{Mg}^{2+}(aq) + 2\mathsf{NO}_3^{\scriptscriptstyle -}(aq)$

Net Ionic: 2H⁺(aq) + Mg(OH)₂(s) \rightarrow 2H₂O(*I*) + Mg²⁺ (aq)

b. $Pb(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow PbSO_4(s) + 2NaNO_3(aq)$ lonic: $Pb^{2+}(aq) + 2NO_3^{-}(aq) + 2Na^{+}(aq) + SO_4^{2-}(aq) \rightarrow PbSO_4(s) + 2Na^{+}(aq) + 2NO_3^{-}(aq)$

Net Ionic: Pb²⁺(aq) + SO₄²⁻(aq) \rightarrow PbSO₄(s) (Q) Write the correct ionic equation for each:

 $\mathsf{Pb}(\mathsf{NO}_3)_2(aq) + 2\mathsf{NH}_4\mathsf{IO}_3(aq) \to \mathsf{Pb}(\mathsf{IO}_3)_2(s) + 2\mathsf{NH}_4\mathsf{NO}_3(aq)$

 $Pb^{2+}(aq) + 2NO_{3}^{-}(aq) + 2NH_{4}^{+}(aq) + 2IO_{3}^{-}(aq) \rightarrow Pb(IO_{3})_{2}(s) + 2NH_{4}^{+}(aq) + 2NO_{3}^{-}(aq)$

 $2\operatorname{NaCl}(aq) + \operatorname{Hg}_{2}(\operatorname{NO}_{3})_{2}(aq) \rightarrow 2\operatorname{NaNO}_{3}(aq) + \operatorname{Hg}_{2}\operatorname{Cl}_{2}(s)$ $2\operatorname{Na}^{+}(aq) + 2\operatorname{Cl}^{-}(aq) + \operatorname{Hg}_{2}^{2+}(aq) + 2\operatorname{NO}_{3}^{-}(aq) \rightarrow$ $2\operatorname{Na}^{+}(aq) + 2\operatorname{NO}_{3}^{-}(aq) + \operatorname{Hg}_{2}\operatorname{Cl}_{2}(s)$

(Q) Consider the following reaction : $Na_2SO_4(aq) + BaCl_2(aq) \rightarrow 2NaCl(aq) + BaSO_4(s)$ Write the correct **ionic** equation.

A. $2Na^+(aq) + SO_4^{2-}(aq) + Ba^{2+}(aq) + Cl_2^{2-}(aq) \rightarrow$ $2Na^+(aq) + 2Cl^-(aq) + BaSO_4(s)$

- B. $2Na^+(aq) + SO_4^{2-}(aq) + Ba^{2+}(aq) + 2Cl^-(aq) \rightarrow$ $2Na^+(aq) + 2Cl^-(aq) + BaSO_4(s)$
- C. $2Na^{+}(aq) + SO_{4}^{2-}(aq) + Ba^{2+}(aq) + Cl_{2}^{2-}(aq) \rightarrow 2Na^{+}(aq) + 2Cl^{-}(aq) + Ba^{2+}(s) + SO_{4}^{2-}(s)$

D. $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$

E. $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow Ba^{2+}(s) + SO_4^{2-}(s)$

Consider the following molecular equation: $(NH_4)_2SO_4(aq) + Ba(CH_3CO_2)_2(aq) \rightarrow$ $2NH_4CH_3CO_2(aq) + BaSO_4(s)$ Write the correct **net** ionic equation. A. $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$ B. $2NH_4^+(aq) + 2CH_3CO_2^-(aq) \rightarrow 2NH_4CH_3CO_2(s)$ C. Ba²⁺(*aq*) + SO₄²⁻(*aq*) \rightarrow BaSO₄(*aq*) $D_2NH_4^+(aq) + Ba^{2+}(aq) + SO_4^{2-}(aq) + 2CH_3CO_2^-(aq) \rightarrow$ $2NH_4^+(aq) + 2CH_3CO_2^-(aq) + BaSO_4(s)$ E. $2NH_4^+(aq) + 2CH_3CO_2^-(aq) \rightarrow 2NH_4CH_3CO_2(aq)$

What is the net ionic equation for the following reaction?

Molecular equation

 $Mg(OH)_{2}(s) + 2HC_{2}H_{3}O_{2}(aq) \longrightarrow$

 $Mg(C_2H_3O_2)_2(aq) + 2H_2O$

Ionic equation

 $Mg(OH)_2(s) + 2HC_2H_3O_2(aq) \longrightarrow$

 $Mg^{2+}(aq) + 2H_2O + 2C_2H_3O_2^{-}(aq)$

- There are NO spectator ions!
- So net ionic and ionic equations are the same

> Types of Chemical Reactions

- Precipitation reactions. In these reactions, you mix solutions of two ionic substances, and a solid ionic substance (a precipitate) forms.
- 2. Acid–base reactions. An acid substance reacts with a substance called a base. Such reactions involve the transfer of a proton between reactants.
- 3. Oxidation–reduction reactions. These involve the transfer of electrons between reactants.

4.3 Precipitation Reactions

 A precipitation reaction occurs in aqueous solution because one product is insoluble.

 $MgCl_2(aq) + 2AgNO_3(aq) \rightarrow 2AgCl(s) + Mg(NO_3)_2(aq)$

 An exchange (or metathesis) reaction is a reaction between compounds that, when written as a molecular equation, appears to involve the exchange of parts between the two reactants **Example 4.3 Deciding Whether a Precipitation Reaction Occurs** For each of the following, decide whether a precipitation reaction occurs. If it does, write the balanced molecular equation and then the net ionic equation. If no reaction occurs, write the compounds followed by an arrow and then *NR* (no reaction).

a. Aqueous solutions of sodium chloride and iron(II) nitrate are mixed.

 $NaCl + Fe(NO_3)_2 \rightarrow NaNO_3 + FeCl_2$ (not balanced)

 $2NaCl + Fe(NO_3)_2 \rightarrow 2NaNO_3 + FeCl_2$ (balanced)

soluble soluble soluble

 $2Na^+ + 2Cl^- + Fe^{2+} + 2NO_3^- \rightarrow 2Na^+ + 2NO_3^- + Fe^{2+} + 2Cl^-$

 $NaCl(aq) + Fe(NO_3)_2(aq) \rightarrow NR$

b. Aqueous solutions of aluminum sulfate and sodium hydroxide are mixed.

 $AI_2(SO_4)_3 + NaOH \rightarrow AI(OH)_3 + Na_2SO_4$ (not balanced)

 $AI_2(SO_4)_3 + 6NaOH \rightarrow 2AI(OH)_3 + 3Na_2SO_4$ (balanced)

 $2\text{Al}^{3+}(aq) + 3\text{SO}_{4}^{2-}(aq) + 6\text{Na}^{+}(aq) + 6\text{OH}^{-}(aq) \longrightarrow$ $2\text{Al}(\text{OH})_{3}(s) + 6\text{Na}^{+}(aq) + 3\text{SO}_{4}^{2-}(aq)$

 $AI^{3+}(aq) + 3OH^{-}(aq) \rightarrow AI(OH)_{3}(s)$

4.4 Acid–Base Reactions

- ✓ Acids have sour taste. Bases have bitter taste & soapy feel.
- ✓ An acid–base indicator is a dye used to distinguish between acidic and basic solutions by means of color change
- ✓ Litmus: in acidic solution = red & in basic solution = blue
 ✓ Phenolphthalein: in acidic solution = colorless &
 - in basic solution = pink

Table 4.2 Common Acids and Base	25	
Name	Formula	Remarks
Acids		
Acetic acid	HC ₂ H ₃ O ₂	Found in vinegar
Acetylsalicylic acid	$HC_9H_7O_4$	Aspirin
Ascorbic acid	$H_2C_6H_6O_6$	Vitamin C
Citric acid	$H_3C_6H_5O_7$	Found in lemon juice
Hydrochloric acid	HCl	Found in gastric juice (digestive fluid in stomach)
Sulfuric acid	H ₂ SO ₄	Battery acid
Bases		
Ammonia	NH ₃	Aqueous solution used as a household cleaner
Calcium hydroxide	Ca(OH) ₂	Slaked lime (used in mortar for building construction)
Magnesium hydroxide	Mg(OH) ₂	Milk of magnesia (antacid and laxative)
Sodium hydroxide	NaOH	Drain cleaners, oven cleaners

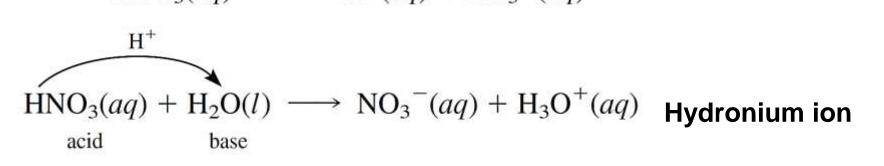
Definitions of Acid and Base

✓ Arrhenius **acid**: a substance that produces hydrogen ions, H⁺, when it dissolves in water. HNO₃(aq) $\xrightarrow{H_2O}$ H⁺(aq) + NO₃⁻(aq)

 ✓ Arrhenius base: a substance that produces hydroxide ions, OH⁻, when it dissolves in water.

NaOH(s) $\xrightarrow{H_2O}$ Na⁺(aq) + OH⁻(aq)

 $NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$


- Brønsted and Lowry acid: a species (molecule or ion) that donates a proton to another species in a proton-transfer reaction
- ✓ Brønsted and Lowry base: a species (molecule or ion) that accepts a proton from another species.

$$H^+$$

$$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$$
base acid

25

✓ The dissolution of HNO₃ in water is actually a proton-transfer reaction. HNO₃(*aq*) $\xrightarrow{H_2O}$ H⁺(*aq*) + NO₃⁻(*aq*)

- The Arrhenius definitions and those of Brønsted and Lowry are essentially equivalent for aqueous solutions
- ✓ NaOH and NH₃ are bases in the Arrhenius view because they increase the percentage of OH⁻ ion in the aqueous solution.
- ✓ NaOH and NH_3 are bases in the Brønsted–Lowry view because they provide species that can accept protons.

- Strong and Weak Acids and Bases
- ✓ A strong acid or base ionizes completely in water.
- ✓ A weak acid or base only partly ionizes in water.
- $HCN(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CN^-(aq)$ $HF(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + F^-(aq)$

$$NaOH(s) \xrightarrow{H_2O} Na^+(aq) + OH^-(aq)$$

 $NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$

- ✓ The hydroxides of Groups 1A and 2A elements are strong bases. Except for Be(OH)₂ and Mg(OH)₂
- ✓ Some weak acids: CH₃COOH, HNO₂, HCIO, H₃PO₄,

	mmon Strong Acids I Bases
Strong Acids	Strong Bases
HClO ₄	LiOH
H_2SO_4	NaOH
HI	КОН
HBr	Ca(OH) ₂
HCl	Sr(OH) ₂
HNO ₃	Ba(OH) ₂

Neutralization Reactions

- ✓ A neutralization reaction is a reaction of an acid and a base that results in an ionic compound (salt) and possibly water.
- \checkmark Most ionic compounds other than hydroxides & oxides are salts

 $\frac{\text{HCN}(aq) + \text{KOH}(aq) \longrightarrow \text{KCN}(aq) + \text{H}_2\text{O}(l)}{\text{acid} \quad \text{base} \quad \text{salt} \quad \underbrace{\text{H}^+}_{\text{HCN}(aq) + \text{OH}^-(aq) \longrightarrow \text{CN}^-(aq) + \text{H}_2\text{O}(l)}_{\text{HCN}(aq) + \text{OH}^-(aq) \longrightarrow \text{CN}^-(aq) + \text{H}_2\text{O}(l)}$

28

Reactions with NH_3 $H_2SO_4(aq) + 2NH_3(aq) \longrightarrow (NH_4)_2SO_4(aq)$ acid base salt H_2O H^+ $H^+(aq) + NH_3(aq) \longrightarrow NH_4^+(aq)$ Example 4.5 Writing an Equation for a Neutralization

(Q)Write the molecular equation and then the net ionic equation for the neutralization of nitrous acid by sodium hydroxide, both in aqueous solution.

 $HNO_2(aq) + NaOH(aq) \longrightarrow NaNO_2(aq) + H_2O(l)$ (molecular equation)

 $HNO_2(aq) + Na^{\pm}(aq) + OH^{-}(aq) \longrightarrow Na^{\pm}(aq) + NO_2^{-}(aq) + H_2O(l)$

(net ionic equation) $HNO_2(aq) + OH^-(aq) \longrightarrow NO_2^-(aq) + H_2O(l)$

$$\frac{\mathrm{H}^{+}}{\mathrm{HNO}_{2}(aq) + \mathrm{OH}^{-}(aq)} \longrightarrow \mathrm{NO}_{2}^{-}(aq) + \mathrm{H}_{2}\mathrm{O}(l)$$

Exercise 4.5 Write the molecular equation and the net ionic equation for the neutralization of hydrocyanic acid, HCN, by lithium hydroxide, LiOH, both in aqueous solution

Exercise 4.6 Write molecular and net ionic equations for the successive neutralizations of each of the acidic hydrogens of sulfuric acid with potassium hydroxide.

- ✓ monoprotic acids: one acidic hydrogen; HCI, HNO₃
- ✓ polyprotic acids: two or more acidic hydrogens; H_2SO_4 , H_3PO_4 ✓ H_3PO_4 : triprotic acid
- ✓ By reacting this acid with different amounts of a base, you can obtain a series of salts:

 $H_3PO_4(aq) + NaOH(aq) \longrightarrow NaH_2PO_4(aq) + H_2O(l)$

 $H_3PO_4(aq) + 2NaOH(aq) \longrightarrow Na_2HPO_4(aq) + 2H_2O(l)$

 $H_3PO_4(aq) + 3NaOH(aq) \longrightarrow Na_3PO_4(aq) + 3H_2O(l)$

 Salts such as NaH₂PO₄ and Na₂HPO₄ that have acidic hydrogen atoms and can undergo neutralization with bases are called *acid salts*

Acid–Base Reactions with Gas Formation

$$Na_{2}CO_{3}(aq) + 2HCl(aq) \longrightarrow 2NaCl(aq) + \underbrace{H_{2}O(l) + CO_{2}(g)}_{H_{2}CO_{3}(aq)}$$

Net ionic eqn. $\operatorname{CO}_3^{2-}(aq) + 2\operatorname{H}^+(aq) \longrightarrow \operatorname{H}_2O(l) + \operatorname{CO}_2(g)$

$$\underbrace{^{2H^{+}}_{CO_{3}^{2-}(aq) + 2H_{3}O + (aq) \longrightarrow H_{2}CO_{3}(aq) + 2H_{2}O(l) \longrightarrow 3H_{2}O(l) + CO_{2}(g)}_{H_{2}O(l) \rightarrow H_{2}O(l) \rightarrow H_{2}O(l$$

Table 4.4 Some Ionic C	Compounds T	hat Evolve Gases When Treated with Acids
Ionic Compound	Gas	Example
Carbonate (CO ₃ ^{2–})	CO_2	$Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$
Sulfite (SO $_3^{2-}$)	SO_2	$Na_2SO_3 + 2HCl \longrightarrow 2NaCl + H_2O + SO_2$
Sulfide (S ²⁻)	H_2S	$Na_2S + H_2SO_4 \longrightarrow Na_2SO_4 + H_2S$

Example 4.6 Writing an Equation for a Reaction with Gas Formation

(Q)Write the molecular equation and the net ionic equation for the reaction of zinc sulfide with hydrochloric acid.

 $ZnS(s) + 2HCl(aq) \longrightarrow ZnCl_2(aq) + H_2S(g)$

 $\operatorname{ZnS}(s) + 2\operatorname{H}^+(aq) + 2\operatorname{Cl}^-(aq) \longrightarrow \operatorname{Zn}^{2+}(aq) + 2\operatorname{Cl}^-(aq) + \operatorname{H}_2S(g)$

 $ZnS(s) + 2H^+(aq) \longrightarrow Zn^{2+}(aq) + H_2S(g)$

Exercise 4.7 Write the molecular equation and the net ionic equation for the reaction of calcium carbonate with nitric acid. CaCO₃ (s)+ 2HNO₃ (aq) \rightarrow Ca(NO₃)₂ (aq)+ H₂CO₃ (aq)

 $CaCO_{3}(s)+2H^{+}(aq)+2NO_{3}^{-}(aq) \rightarrow Ca^{2+}+2NO_{3}^{-}(aq)+H_{2}O(I)+CO_{2}(g)$

 $CaCO_{3}(s)+2H^{+}(aq) \rightarrow Ca^{2+}+H_{2}O(I)+CO_{2}(g)$