EBBING-GAMMON

Chemical Reactions

General
Chemistry

4.5 Oxidation-Reduction Reactions

$\mathrm{Fe}(s)+\mathrm{CuSO}_{4}(a q) \rightarrow \mathrm{FeSO}_{4}(a q)+\mathrm{Cu}(s)$

$$
\mathrm{Fe}(s)+\mathrm{CuSO}_{4}(a q) \rightarrow \mathrm{FeSO}_{4}(a q)+\mathrm{Cu}(s)
$$

The net ionic equation is:

$$
\mathrm{Fe}(s)+\mathrm{Cu}^{2+}(a q) \rightarrow \mathrm{Fe}^{2+}(a q)+\mathrm{Cu}(s)
$$

$>$ Oxidation Numbers

an oxidation-reduction reaction (or redox reaction) is a reaction in which electrons are transferred between species or in which atoms change oxidation number.

Formerly, the term oxidation meant "reaction with oxygen."

$$
\begin{aligned}
2 \mathrm{Ca}(s)+\mathrm{O}_{2}(g) & \rightarrow 2 \mathrm{CaO}(s) \\
\mathrm{Ca}(s)+\mathrm{Cl}_{2}(g) & \rightarrow \mathrm{CaCl}_{2}(s)
\end{aligned}
$$

$>$ Oxidation-Number Rules:

Table 4.5 Rules for Assigning Oxidation Numbers

Rule	Applies to	Statement
1	Elements	The oxidation number of an atom in an element is zero.
2	Monatomic ions	The oxidation number of an atom in a monatomic ion equals the charge on the ion.
3	Oxygen	The oxidation number of oxygen is -2 in most of its compounds. (An exception is O in $\mathrm{H}_{2} \mathrm{O}_{2}$ and other peroxides, where the oxidation number is -1 .)
4	Hydrogen	The oxidation number of hydrogen is +1 in most of its compounds. (The oxidation number of hydrogen is -1 in binary compounds with a metal, such as CaH_{2}.)
5	Halogens	The oxidation number of fluorine is -1 in all of its compounds. Each of the other halogens ($\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) has an oxidation number of -1 in binary compounds, except when the other element is another halogen above it in the periodic table or the other element is oxygen.
6	Compounds and ions	The sum of the oxidation numbers of the atoms in a compound is zero. The sum of the oxidation numbers of the atoms in a polyatomic ion equals the charge on the ion.

Examples: SO_{2} : HClO_{4} : ClO_{3} :
 $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$: $\mathrm{MnO}_{4}{ }^{-}:$

$>$ Describing Oxidation-Reduction Reactions

$$
\stackrel{0}{\mathrm{Fe}}(s)+\stackrel{+2}{\mathrm{C} \mathrm{Cu}^{2+}}(a q) \longrightarrow \stackrel{+2}{\mathrm{~F}}{ }^{2+}(a q)+\stackrel{0}{\mathrm{C} u}(s)
$$

We can write this reaction in terms of two half-reactions

$$
\left.\stackrel{0}{\mathrm{Fe}}(s) \longrightarrow \stackrel{+2}{\mathrm{~F}} \mathrm{e}^{2+}(a q)+2 \mathrm{e}^{-} \quad \text { (electrons lost by } \mathrm{Fe}\right)
$$

$\stackrel{+2}{\mathrm{C}}{ }^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \stackrel{0}{\mathrm{Cu}}(s) \quad$ (electrons gained by Cu^{2+})

> Some Common Oxidation-Reduction Reactions

1. Combination reaction
2. Decomposition reaction
3. Displacement reaction
4. Combustion reaction
5. Combination Reactions is a reaction in which two substances combine to form a third substance

$$
\begin{gathered}
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NaCl}(s) \\
2 \mathrm{Sb}+3 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{SbCl}_{3}
\end{gathered}
$$

\checkmark Not all combination reactions are oxidation- reduction reactions

$$
\mathrm{CaO}(s)+\mathrm{SO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CaSO}_{3}(s)
$$

2. Decomposition Reactions is a reaction in which a single compound reacts to give two or more substances

$$
\begin{gathered}
2 \mathrm{HgO}(s) \xrightarrow{\Delta} 2 \mathrm{Hg}(l)+\mathrm{O}_{2}(\mathrm{~g}) \\
2 \mathrm{KClO}_{3}(s) \xrightarrow[\mathrm{MnO}_{2}]{\Delta} 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
\end{gathered}
$$

\checkmark Not all decomposition reactions are oxidation-reduction reactions

$$
\mathrm{CaCO}_{3}(s) \xrightarrow{\Delta} \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)
$$

3. Displacement reaction (also called a single-replacement reaction) is a reaction in which an element reacts with a compound, displacing another element from it.
\checkmark involve an element and one of its compounds \rightarrow must be oxidation-reduction reactions.

$$
\mathrm{Cu}(s)+2 \mathrm{AgNO}_{3}(a q) \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{Ag}(s)
$$

Net ionic rxn.

$$
\mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(s)
$$

$\mathrm{Zn}(s)+2 \mathrm{HCl}(a q) \longrightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(g)$ Net ionic rxn.
$\mathrm{Zn}(s)+2 \mathrm{H}^{+}(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{H}_{2}(g)$
\checkmark metals listed at the top are the strongest reducing agents (they lose electrons easily)
\checkmark A free element reacts with the monatomic ion of another element if the free element is above the other element in the activity series
\checkmark The highlighted elements react slowly with liquid water, but readily with steam, to give H_{2}
$2 \mathrm{~K}(s)+2 \mathrm{H}^{+}(a q) \longrightarrow 2 \mathrm{~K}^{+}(a q)+\mathrm{H}_{2}(g)$

Table 4.6 Activity Series of the Elements

React vigorously with acidic solutions and water to give H_{2}	$\left\{\begin{array}{l} \mathrm{Li} \\ \mathrm{~K} \\ \mathrm{Ba} \\ \mathrm{Ca} \\ \mathrm{Na} \end{array}\right.$
React with acids to give H_{2}	$\left\{\begin{array}{l}\mathrm{Mg} \\ \mathrm{Al} \\ \mathrm{Zn} \\ \mathrm{Cr} \\ \mathrm{Fe} \\ \mathrm{Cd} \\ \mathrm{Co} \\ \mathrm{Ni} \\ \mathrm{Sn} \\ \mathrm{Pb}\end{array}\right.$
Do not react with acids to give $\mathrm{H}_{2}{ }^{*}$	$\begin{gathered} \mathrm{H}_{2} \\ \left\{\begin{array}{l} \mathrm{Cu} \\ \mathrm{Hg} \\ \mathrm{Ag} \\ \mathrm{Au} \end{array}\right. \end{gathered}$

4. Combustion reaction is a reaction in which a substance reacts with oxygen, usually with the rapid release of heat to produce a flame.
\checkmark The products include one or more oxides. Oxygen changes oxidation number from 0 to -2 , so combustions are oxidationreduction reactions.

$$
\begin{aligned}
2 \mathrm{C}_{4} \mathrm{H}_{10}(g)+13 \mathrm{O}_{2}(\mathrm{~g}) & \longrightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) & \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
\end{aligned}
$$

4.6 Balancing Simple Oxidation-Reduction Equations

(Q) Apply the half-reaction method to balance the following equation: $\quad \mathrm{Mg}(s)+\mathrm{N}_{2}(g) \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(s)$

$$
\begin{aligned}
& \mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \quad \text { (balanced oxidation half-reaction) } \\
& \mathrm{N}_{2}+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{~N}^{3-} \\
& \text { (balanced reduction half-reaction) } \\
& 3 \times\left(\mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}\right) \\
& \frac{1 \times\left(\mathrm{N}_{2}+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{~N}^{3-}\right)}{3 \mathrm{Mg}+\mathrm{N}_{2}+6 \mathrm{e}^{-} \longrightarrow 3 \mathrm{Mg}^{2+}+2 \mathrm{~N}^{3-}+6 \mathrm{e}^{-}} \\
& \mathbf{3 M g}+\mathrm{N}_{\mathbf{2}} \longrightarrow \mathbf{3} \mathbf{M g}^{\mathbf{2 +}}+\mathbf{2} \mathbf{N}^{\mathbf{3 -}} \\
& 3 \mathrm{Mg}(s)+\mathrm{N}_{2}(g) \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(s)
\end{aligned}
$$

4.66 Balance the following oxidation-reduction reactions by the half-reaction method.
a. $\mathrm{Fel}_{3}(\mathrm{aq})+\mathrm{Mg}(s) \rightarrow \mathrm{Fe}(s)+\mathrm{Mgl}_{2}(a q)$
$\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \quad$ (oxidation half-reaction)
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe} \quad$ (reduction half-reaction)

$$
\begin{aligned}
& 3 \times\left(\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}\right) \\
& \frac{2 \times\left(\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}\right)}{2 \mathrm{Fe}^{3+}+3 \mathrm{Mg}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Fe}+3 \mathrm{Mg}^{2+}+6 \mathrm{e}^{-}} \\
& 2 \mathrm{Fe}^{3+}+3 \mathrm{Mg} \rightarrow 2 \mathrm{Fe}+3 \mathrm{Mg}^{2+} \\
& 2 \mathrm{Fel}_{3}(\mathrm{aq})+3 \mathrm{Mg}(s) \rightarrow 2 \mathrm{Fe}(s)+3 \mathrm{Mgl}_{2}(\mathrm{aq})
\end{aligned}
$$

4.7 Molar Concentration

Molarity $(M)=\frac{\text { moles of solute }}{\text { liters of solution }}$

(Q) A sample of NaNO_{3} weighing 0.38 g is placed in a 50.0 mL volumetric flask. The flask is then filled with water to the mark on the neck. What is the molarity of the resulting solution?

$$
\text { Molarity }=\frac{4.47 \times 10^{-3} \mathrm{~mol} \mathrm{NaNO}_{3}}{50.0 \times 10^{-3} \mathrm{~L} \text { soln }}=\mathbf{0 . 0 8 9} \mathrm{M} \mathrm{NaNO}_{3}
$$

4.8 Diluting Solutions

$$
M_{i} \times V_{i}=M_{f} \times V_{f}
$$

(Q)You are given a solution of $14.8 \mathrm{MNH}_{3}$. How many milliliters of this solution do you require to give 100.0 mL of $1.00 \mathrm{MNH}_{3}$?

$$
V_{i}=\frac{1.00 M \times 100.0 \mathrm{~mL}}{14.8 M}=6.76 \mathrm{~mL}
$$

\checkmark Number of moles does not change
(Q) What is the molar concentration of Na^{+}in a solution made by dissolving 1.59 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (molar mass $=106 \mathrm{~g} / \mathrm{mol}$) in 100 mL $\mathrm{H}_{2} \mathrm{O}$?

4.9 Gravimetric Analysis

is a type of quantitative analysis in which the amount of a species in a material is determined by converting the species to a product that can be isolated completely and weighed.
(Q) A 1.000-L sample of polluted water was analyzed for lead(II) ion, Pb^{2+}, by adding an excess of sodium sulfate to it. The mass of lead(II) sulfate that precipitated was 229.8 mg . What is the mass of lead in a liter of the water? Give the answer as milligrams of lead per liter of solution.
\checkmark Solution: mass percentage of Pb in PbSO_{4}

$$
\% \mathrm{~Pb}=\frac{207.2 \mathrm{~g} / \mathrm{mol}}{303.3 \mathrm{~g} / \mathrm{mol}} \times 100 \%=68.32 \%
$$

Amount Pb in sample $=229.8 \mathrm{mg} \mathrm{PbSO} 4 \times 0.6832=157.0 \mathrm{mg} \mathrm{Pb}$
The water sample contains 157.0 mg Pb per liter.

Exercise 4.14 You are given a sample of limestone, which is mostly CaCO_{3}, to determine the mass percentage of Ca in the rock. You dissolve the limestone in hydrochloric acid, which gives a solution of calcium chloride. Then you precipitate the calcium ion in solution by adding sodium oxalate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. The precipitate is calcium oxalate, $\mathrm{CaC}_{2} \mathrm{O}_{4}$. You find that a sample of limestone weighing 128.3 mg gives 140.2 mg of $\mathrm{CaC}_{2} \mathrm{O}_{4}$. What is the mass percentage of calcium in the limestone?

There are two different reactions taking place in forming the $\mathrm{CaC}_{2} \mathrm{O}_{4}$ (molar mass $128.10 \mathrm{~g} / \mathrm{mol}$) precipitate. These are

$$
\begin{aligned}
& \mathrm{CaCO}_{3}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \\
& \mathrm{CaCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q) \rightarrow \mathrm{CaC}_{2} \mathrm{O}_{4}(s)+2 \mathrm{NaCl}(a q)
\end{aligned}
$$

The overall stoichiometry of the reactions is one $\mathrm{mol}_{\mathrm{CaCO}}^{3} / \mathrm{one} \mathrm{mol} \mathrm{CaC}_{2} \mathrm{O}_{4}$. Also note that each CaCO_{3} contains one Ca atom, so this gives an overall conversion factor of one $\mathrm{mol} \mathrm{Ca} / \mathrm{one}$ mol $\mathrm{CaC}_{2} \mathrm{O}_{4}$.
The mass of Ca can now be calculated.

$$
0.1402 \mathrm{~g} \mathrm{CaC}_{2} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CaC}_{2} \mathrm{O}_{4}}{128.10 \mathrm{~g} \mathrm{CaC}_{2} \mathrm{O}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{Ca}}{1 \mathrm{~mol} \mathrm{CaC}_{2} \mathrm{O}_{4}} \times \frac{40.08 \mathrm{~g} \mathrm{Ca}}{1 \mathrm{~mol} \mathrm{Ca}}=0.0438 \underline{6} 6 \mathrm{~g} \mathrm{Ca}
$$

Now, calculate the percentage of calcium in the $128.3 \mathrm{mg}(0.1283 \mathrm{~g})$ limestone:

$$
\frac{0.043866 \mathrm{~g} \mathrm{Ca}}{0.1283 \mathrm{~g} \text { limestone }} \times 100 \%=34.1 \underline{9} 0=34.19 \%
$$

4.85 Copper has compounds with copper(I) ion or copper(II) ion. A compound of copper and chlorine was treated with a solution of silver nitrate, AgNO_{3}, to convert the chloride ion in the compound to a precipitate of AgCl . A $59.40-\mathrm{mg}$ sample of the copper compound gave 86.00 mg AgCl .
a. Calculate the percentage of chlorine in the copper compound.
b. Decide whether the formula of the compound is CuCl or CuCl_{2}. Molar mass (g/mol): $\mathrm{AgCl}=143.32 ; \mathrm{Cl}=35.45 ; \mathrm{CuCl}=99.0 ; \mathrm{CuCl}_{2}=134.45$

4.10 Volumetric Analysis

Example 4.13 Calculating the Volume of Reactant Solution Needed
(Q) Consider the following reaction:
$\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{NaOH}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)$
Suppose a beaker contains 35.0 mL of $0.175 \mathrm{MH}_{2} \mathrm{SO}_{4}$. How many milliliters of 0.250 M NaOH must be added to react completely with the sulfuric acid?

$$
\begin{aligned}
& 35.0 \times 10^{-3} \mathrm{LH}_{2} \mathrm{SO}_{4} \operatorname{soln} \times \frac{0.175 \mathrm{moH}_{2} \mathrm{SO}_{4}}{1 \mathrm{LH}_{2} \mathrm{SO}_{4} \mathrm{SOIn}} \times \frac{2 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \\
& \quad \frac{1 \mathrm{~L} \mathrm{NaOH} \text { soln }}{0.250 \mathrm{~mol} \mathrm{NaOH}}=4.90 \times 10^{-2} \mathrm{~L} \mathrm{NaOH} \mathrm{soln}(\text { or } 49.0 \mathrm{~mL} \mathrm{NaOH} \text { soln })
\end{aligned}
$$

Exercise 4.15 consider the following reaction: $3 \mathrm{NiSO}_{4}(\mathrm{aq})+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+3 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ How many milliliters of $0.375 \mathrm{M} \mathrm{NiSO}_{4}$ will react with 45.7 mL of $0.265 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$?

Example 4.14

Calculating the Quantity of Substance in a Titrated Solution
(Q) A flask contains a solution with an unknown amount of HCl . This solution is titrated with 0.207 M NaOH . It takes 4.47 mL of the NaOH solution to complete the reaction. What is the mass of the HCl ?

$$
\mathrm{NaOH}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda
$$

Solution The calculation is as follows:

$$
4.47 \times 10^{-3} \mathrm{~L} \mathrm{NaOH} \text { sorn } \times \frac{0.207 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L} \mathrm{NaOH} \mathrm{sonn}} \times \frac{1 \mathrm{molHCt}}{1 \text { mol } \mathrm{NaOH}} \times \frac{36.5 \mathrm{~g} \mathrm{HCl}}{1 \text { mol HCt }}
$$

$=0.0338 \mathrm{~g} \mathrm{HCl}$
4.91 How many milliliters of $0.150 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are required to react with 8.20 g of NaHCO_{3}, according to the following equation? $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaHCO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(I)+2 \mathrm{CO}_{2}(g)$ Molar mass ($\mathrm{g} / \mathrm{mol}$): $\mathrm{NaHCO}_{3}=84.01$
4.111 A stock solution of potassium dichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(294.2 \mathrm{~g} / \mathrm{mol})$, is made by dissolving 84.5 g of the compound in 1.00 L of solution. How many milliliters of this solution are required to prepare 1.00 L of $0.15 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$?
4.113 A solution contains 6.0% (by mass) NaBr . The density of the solution is $1.046 \mathrm{~g} / \mathrm{cm}^{3}$. What is the molarity of $\mathrm{NaBr}(102.89 \mathrm{~g} / \mathrm{mol})$?
4.132 Identify each of the following reactions as being a neutralization, precipitation, or reduction-oxidation reaction.
a. $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}(g) \rightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(g)$
b. $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{HgSO}_{4}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$
c. $\mathrm{CsOH}(\mathrm{aq})+\mathrm{HClO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cs}^{+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{ClO}_{4}^{-}(\mathrm{aq})$
d. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{MgS}(s)+2 \mathrm{NaNO}_{3}(a q)$
4.135(modified) A $25-\mathrm{mL}$ sample of 0.50 M NaOH is combined with a $75-\mathrm{mL}$ sample of 0.30 M NaOH . What is the molarity of the resulting NaOH solution?
4.140 Potassium hydrogen phthalate (abbreviated as KHP) has the molecular formula $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$ and a molar mass of $204.22 \mathrm{~g} / \mathrm{mol}$. KHP has one acidic hydrogen. A solid sample of KHP is dissolved in 50 mL of water and titrated to the equivalence point with 22.90 mL of a 0.5010 M NaOH solution. How many grams of KHP were used in the titration?
4.74 What is the volume (in milliliters) of $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ containing 0.949 g $\mathrm{H}_{2} \mathrm{SO}_{4}(98.07 \mathrm{~g} / \mathrm{mol}) ?$

