EBBING - GAMMON

Chemical Reactions

General Chemistry ELEVENTH EDITION

©2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

4.5 Oxidation–Reduction Reactions

 $Fe(s) + CuSO_4(aq) \rightarrow FeSO_4(aq) + Cu(s)$

 $Fe(s) + CuSO_4(aq) \rightarrow FeSO_4(aq) + Cu(s)$

The net ionic equation is:

 $Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$

> Oxidation Numbers

an **oxidation-reduction reaction** (or **redox reaction**) is a reaction in which electrons are transferred between species or in which atoms change oxidation number.

Formerly, the term oxidation meant "reaction with oxygen."

 $2Ca(s) + O_2(g) \rightarrow 2CaO(s)$

 $Ca(s) + Cl_2(g) \rightarrow CaCl_2(s)$

> Oxidation-Number Rules:

Table 4.5 Rules for Assigning Oxidation Numbers				
Rule	Applies to	Statement		
1	Elements	The oxidation number of an atom in an element is zero.		
2	Monatomic ions	The oxidation number of an atom in a monatomic ion equals the charge on the ion.		
3	Oxygen	The oxidation number of oxygen is -2 in most of its compounds. (An exception is O in H_2O_2 and other peroxides, where the oxidation number is -1 .)		
4	Hydrogen	The oxidation number of hydrogen is +1 in most of its compounds. (The oxidation number of hydrogen is -1 in binary compounds with a metal, such as CaH ₂ .)		
5	Halogens	The oxidation number of fluorine is -1 in all of its compounds. Each of the other halogens (Cl, Br, I) has an oxidation number of -1 in binary compounds, except when the other element is another halogen above it in the periodic table or the other element is oxygen.		
6	Compounds and ions	The sum of the oxidation numbers of the atoms in a compound is zero. The sum of the oxidation numbers of the atoms in a polyatomic ion equals the charge on the ion.		

Examples: SO₂: HClO₄: ClO₃⁻: $K_2Cr_2O_7$: MnO₄⁻: Describing Oxidation–Reduction Reactions

$$\overset{0}{\mathrm{Fe}}(s) + \overset{+2}{\mathrm{Cu}}^{2+}(aq) \longrightarrow \overset{+2}{\mathrm{Fe}}^{2+}(aq) + \overset{0}{\mathrm{Cu}}(s)$$

We can write this reaction in terms of two half-reactions

 $\stackrel{0}{\text{Fe}}(s) \longrightarrow \stackrel{+2}{\text{Fe}}{}^{2+}(aq) + 2e^{-}$ (electrons lost by Fe)

 $\overset{+2}{\mathrm{Cu}^{2+}}(aq) + 2\mathrm{e}^{-} \longrightarrow \overset{0}{\mathrm{Cu}}(s)$

(electrons gained by Cu²⁺)

Some Common Oxidation–Reduction Reactions

- 1. Combination reaction
- 2. Decomposition reaction
- 3. Displacement reaction
- 4. Combustion reaction
- 1. **Combination Reactions** is a reaction in which two substances combine to form a third substance

$$2Na(s) + Cl_2(g) \longrightarrow 2NaCl(s)$$
$$2Sb + 3Cl_2 \longrightarrow 2SbCl_3$$

✓ Not all combination reactions are oxidation- reduction reactions

$$CaO(s) + SO_2(g) \longrightarrow CaSO_3(s)$$

2. **Decomposition Reactions** is a reaction in which a single compound reacts to give two or more substances

 $2 \text{HgO}(s) \xrightarrow{\Delta} 2 \text{Hg}(l) + \text{O}_2(g)$ $2 \text{KClO}_3(s) \xrightarrow{\Delta} 2 \text{KCl}(s) + 3 \text{O}_2(g)$

- ✓ Not all decomposition reactions are oxidation-reduction reactions $CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$
- 3. **Displacement reaction** (also called a **single-replacement reaction**) is a reaction in which an element reacts with a compound, displacing another element from it.
- ✓ involve an element and one of its compounds →must be oxidation-reduction reactions.

$$Cu(s) + 2AgNO_3(aq) \longrightarrow Cu(NO_3)_2(aq) + 2Ag(s)$$

Net ionic rxn. $Cu(s) + 2Ag^+(aq) \longrightarrow Cu^{2+}(aq) + 2Ag(s)$ ⁷

 $Zn(s) + 2HCl(aq) \longrightarrow ZnCl_2(aq) + H_2(g)$ Net ionic rxn.

 $Zn(s) + 2H^+(aq) \longrightarrow Zn^{2+}(aq) + H_2(g)$

- ✓ metals listed at the top are the strongest reducing agents (they lose electrons easily)
- A free element reacts with the monatomic ion of another element if the free element is above the other element in the activity series
- ✓ The highlighted elements react slowly with liquid water, but readily with steam, to give H₂

 $2K(s) + 2H^+(aq) \longrightarrow 2K^+(aq) + H_2(g)$

Table 4.6	Activity Se the Elemen	
React vigore with acid solutions water to	lic s and	Li K Ba Ca Na
React with a to give H		Mg Al Zn Cr Fe Cd Co Ni Sn Pb
Do not reac acids to		$ \begin{array}{c} H_2\\ Cu\\ Hg\\ Ag\\ Au \end{array} $

4. **Combustion reaction** is a reaction in which a substance reacts with oxygen, usually with the rapid release of heat to produce a flame.

✓ The products include one or more oxides. Oxygen changes oxidation number from 0 to -2, so combustions are oxidation-reduction reactions.

$$2C_4H_{10}(g) + 13O_2(g) \longrightarrow 8CO_2(g) + 10H_2O(g)$$

$$4\text{Fe}(s) + 3\text{O}_2(g) \longrightarrow 2\text{Fe}_2\text{O}_3(s)$$

4.6 Balancing Simple Oxidation-Reduction Equations

(Q) Apply the half-reaction method to balance the following equation: $Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$

$$\overset{0}{\mathrm{Mg}}(s) + \overset{0}{\mathrm{N}_{2}}(g) \longrightarrow \overset{+2}{\mathrm{Mg}_{3}}\overset{-3}{\mathrm{N}_{2}}(s)$$

 $Mg \longrightarrow Mg^{2+} + 2e^{-} \qquad (balanced oxidation half-reaction)$ $N_{2} + 6e^{-} \longrightarrow 2N^{3-} \qquad (balanced reduction half-reaction)$

$$3 \times (Mg \longrightarrow Mg^{2+} + 2e^{-})$$

$$\frac{1 \times (N_2 + 6e^{-} \longrightarrow 2N^{3-})}{3Mg + N_2 + 6e^{-} \longrightarrow 3Mg^{2+} + 2N^{3-} + 6e^{-}}$$

$$3Mg + N_2 \longrightarrow 3Mg^{2+} + 2N^{3-}$$

$$3Mg(s) + N_2(g) \longrightarrow Mg_3N_2(s)$$

4.66 Balance the following oxidation—reduction reactions by the half-reaction method.

a. $\operatorname{Fel}_3(aq) + \operatorname{Mg}(s) \rightarrow \operatorname{Fe}(s) + \operatorname{Mgl}_2(aq)$

 $\begin{array}{ll} Mg \rightarrow Mg^{2+} + 2e^{-} & (oxidation half-reaction) \\ Fe^{3+} + 3e^{-} \rightarrow Fe & (reduction half-reaction) \end{array}$

$$3 \times (Mg \rightarrow Mg^{2+} + 2e^{-})$$

$$\underline{2 \times (Fe^{3+} + 3e^{-} \rightarrow Fe)}$$

$$2Fe^{3+} + 3Mg + \underline{6e^{-}} \rightarrow 2Fe + 3Mg^{2+} + \underline{6e^{-}}$$

 $2Fe^{3+} + 3Mg \rightarrow 2Fe + 3Mg^{2+}$

 $2\text{Fel}_3(aq) + 3\text{Mg}(s) \rightarrow 2\text{Fe}(s) + 3\text{Mgl}_2(aq)$

4.7 Molar Concentration

Molarity $(M) = \frac{\text{moles of solute}}{\text{liters of solution}}$

(Q) A sample of NaNO₃ weighing 0.38 g is placed in a 50.0 mL volumetric flask. The flask is then filled with water to the mark on the neck. What is the molarity of the resulting solution?

Molarity = $\frac{4.47 \times 10^{-3} \text{ mol NaNO}_3}{50.0 \times 10^{-3} \text{ L soln}} = 0.089 M \text{ NaNO}_3$

4.8 Diluting Solutions

$$M_i \times V_i = M_f \times V_f$$

(Q)You are given a solution of 14.8 M NH₃. How many milliliters of this solution do you require to give 100.0 mL of 1.00 M NH₃?

$$V_i = \frac{1.00 \ M \times 100.0 \ mL}{14.8 \ M} = 6.76 \ mL$$

✓ Number of moles does not change

(Q) What is the molar concentration of Na⁺ in a solution made by dissolving 1.59 g of Na₂CO₃ (molar mass = 106g/mol) in 100 mL H₂O?

4.9 Gravimetric Analysis

is a type of quantitative analysis in which the amount of a species in a material is determined by converting the species to a product that can be isolated completely and weighed.

(Q) A 1.000-L sample of polluted water was analyzed for lead(II) ion, Pb²⁺, by adding an excess of sodium sulfate to it. The mass of lead(II) sulfate that precipitated was 229.8 mg. What is the mass of lead in a liter of the water? Give the answer as milligrams of lead per liter of solution.

✓ Solution: mass percentage of Pb in PbSO₄

$$\% \text{Pb} = \frac{207.2 \text{ g/mol}}{303.3 \text{ g/mol}} \times 100\% = 68.32\%$$

Amount Pb in sample = 229.8 mg PbSO₄ X 0.6832 = 157.0 mg Pb

The water sample contains 157.0 mg Pb per liter.

Exercise 4.14 You are given a sample of limestone, which is mostly $CaCO_3$, to determine the mass percentage of Ca in the rock. You dissolve the limestone in hydrochloric acid, which gives a solution of calcium chloride. Then you precipitate the calcium ion in solution by adding sodium oxalate, $Na_2C_2O_4$. The precipitate is calcium oxalate, CaC_2O_4 . You find that a sample of limestone weighing 128.3 mg gives 140.2 mg of CaC_2O_4 . What is the mass percentage of calcium in the limestone?

There are two different reactions taking place in forming the CaC₂O₄ (molar mass 128.10 g/mol) precipitate. These are

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

$$CaCl_2(aq) + Na_2C_2O_4(aq) \rightarrow CaC_2O_4(s) + 2NaCl(aq)$$

The overall stoichiometry of the reactions is one mol $CaCO_3$ /one mol CaC_2O_4 . Also note that each $CaCO_3$ contains one Ca atom, so this gives an overall conversion factor of one mol Ca/one mol CaC_2O_4 .

The mass of Ca can now be calculated.

$$0.1402 \text{ g } \text{CaC}_2\text{O}_4 \times \frac{1 \text{ mol } \text{CaC}_2\text{O}_4}{128.10 \text{ g } \text{CaC}_2\text{O}_4} \times \frac{1 \text{ mol } \text{Ca}}{1 \text{ mol } \text{CaC}_2\text{O}_4} \times \frac{40.08 \text{ g } \text{Ca}}{1 \text{ mol } \text{Ca}} = 0.0438\underline{6}6 \text{ g } \text{Ca}$$

Now, calculate the percentage of calcium in the 128.3 mg (0.1283 g) limestone:

$$\frac{0.0438\underline{6}6 \text{ g Ca}}{0.1283 \text{ g limestone}} \times 100\% = 34.1\underline{9}0 = 34.19\%$$
15

4.85 Copper has compounds with copper(I) ion or copper(II) ion. A compound of copper and chlorine was treated with a solution of silver nitrate, $AgNO_3$, to convert the chloride ion in the compound to a precipitate of AgCI. A 59.40-mg sample of the copper compound gave 86.00 mg AgCI.

a. Calculate the percentage of chlorine in the copper compound.

b. Decide whether the formula of the compound is CuCI or $CuCI_2$.

Molar mass (g/mol): AgCl=143.32; Cl=35.45; CuCl=99.0; CuCl₂=134.45

4.10 Volumetric Analysis

Example 4.13 Calculating the Volume of Reactant Solution Needed

(Q) Consider the following reaction: $H_2SO_4(aq) + 2NaOH(aq) \rightarrow 2H_2O(I) + Na_2SO_4(aq)$ Suppose a beaker contains 35.0 mL of 0.175 $M H_2SO_4$. How many milliliters of 0.250 M NaOH must be added to react completely with the sulfuric acid?

 $35.0 \times 10^{-3} \text{ L-H}_2 \text{SO}_4 \text{ soln} \times \frac{0.175 \text{ mol} \text{H}_2 \text{SO}_4}{1 \text{ L-H}_2 \text{SO}_4 \text{ soln}} \times \frac{2 \text{ mol} \text{ NaOH}}{1 \text{ mol} \text{ H}_2 \text{SO}_4} \times \frac{1 \text{ L NaOH soln}}{0.250 \text{ mol} \text{ NaOH}} = 4.90 \times 10^{-2} \text{ L NaOH soln (or 49.0 mL NaOH soln)}$

Exercise 4.15 consider the following reaction:

 $3NiSO_4(aq) + 2Na_3PO_4(aq) \rightarrow Ni_3(PO_4)_2(s) + 3Na_2SO_4(aq)$ How many milliliters of 0.375 *M* NiSO₄ will react with 45.7 mL of 0.265 *M* Na_3PO_4? Example 4.14

Calculating the Quantity of Substance in a Titrated Solution

(Q) A flask contains a solution with an unknown amount of HCI. This solution is titrated with 0.207 *M* NaOH. It takes 4.47 mL of the NaOH solution to complete the reaction. What is the mass of the HCI?

```
NaOH(aq) + HCI(aq) \rightarrow NaCI(aq) + H_2O(l)
```

Solution The calculation is as follows:

 $4.47 \times 10^{-3} \text{ L-NaOH sotn} \times \frac{0.207 \text{ mol-NaOH}}{1 \text{ L-NaOH sotn}} \times \frac{1 \text{ mol-HCt}}{1 \text{ mol-NaOH}} \times \frac{36.5 \text{ g HCl}}{1 \text{ mol-HCt}}$

= 0.0338 g HCl

4.91 How many milliliters of 0.150 $M H_2SO_4$ are required to react with 8.20 g of NaHCO₃, according to the following equation? H₂SO₄(*aq*) + 2NaHCO₃(*aq*) \rightarrow Na₂SO₄(*aq*) + 2H₂O(*I*) + 2CO₂(*g*) Molar mass (g/mol): NaHCO₃ = 84.01 **4.111** A stock solution of potassium dichromate, $K_2Cr_2O_7$ (294.2 g/mol), is made by dissolving 84.5 g of the compound in 1.00 L of solution. How many milliliters of this solution are required to prepare 1.00 L of 0.15 $M K_2Cr_2O_7$?

4.113 A solution contains 6.0% (by mass) NaBr. The density of the solution is 1.046 g/cm³. What is the molarity of NaBr (102.89 g/mol)?

4.132 Identify each of the following reactions as being a neutralization, precipitation, or reduction-oxidation reaction. a. Fe₂O₃(s) + 3CO(g) → 2Fe(s) + 3CO₂(g) b. Na₂SO₄(aq) + Hg(NO₃)₂(aq) → HgSO₄(s) + 2NaNO₃(aq) c. CsOH(aq) + HCIO₄(aq) → Cs⁺(aq) + 2H₂O(l) + CIO₄⁻(aq) d. Mg(NO₃)₂(aq) + Na₂S(aq) → MgS(s) + 2NaNO₃(aq)

4.135(modified) A 25-mL sample of 0.50 *M* NaOH is combined with a 75-mL sample of 0.30 *M* NaOH. What is the molarity of the resulting NaOH solution?

4.140 Potassium hydrogen phthalate (abbreviated as KHP) has the molecular formula $KHC_8H_4O_4$ and a molar mass of 204.22 g/mol. KHP has one acidic hydrogen. A solid sample of KHP is dissolved in 50 mL of water and titrated to the equivalence point with 22.90 mL of a 0.5010 *M* NaOH solution. How many grams of KHP were used in the titration?

4.74 What is the volume (in milliliters) of 0.100 $M H_2SO_4$ containing 0.949 g H_2SO_4 (98.07 g/mol)?