The Gaseous State

General

$>$ Gas Laws

Most substances composed of small molecules are gases under normal conditions or else are easily vaporized liquids

Table 5.1 Properties of Selected Gases

Name	Formula	Color	Odor	Toxicity
Ammonia	NH_{3}	Colorless	Penetrating	Toxic
Carbon dioxide	CO_{2}	Colorless	Odorless	Nontoxic
Carbon monoxide	CO	Colorless	Odorless	Very toxic
Chlorine	Cl_{2}	Pale green	Irritating	Very toxic
Hydrogen	H_{2}	Colorless	Odorless	Nontoxic
Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	Colorless	Foul	Very toxic
Methane	CH_{4}	Colorless	Odorless	Nontoxic
Nitrogen dioxide	NO_{2}	Red-brown	Irritating	Very toxic

5.1 Gas Pressure and Its Measurement

Pressure is defined as the force exerted per unit area of surface
\checkmark Force $=$ mass \times constant acceleration of gravity
\checkmark SI unit of pressure, $\mathrm{kg} /\left(\mathrm{m} \cdot s^{2}\right)$, is given the name pascal (Pa)
\checkmark A barometer is a device for measuring the pressure of the atmosphere
\checkmark A manometer, a device that measures the pressure of a gas or liquid in a vessel

\checkmark Pressure of a coin (9.3 mm in radius and 2.5 g)
Force $=$ mass $\times \mathrm{g}=\left(2.5 \times 10^{-3} \mathrm{~kg}\right) \times\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
Area $=\pi \times(\text { radius })^{2}=3.14 \times\left(9.3 \times 10^{-3} \mathrm{~m}\right)^{2}$
Pressure $=\frac{\text { force }}{\text { area }}=\frac{2.5 \times 10^{-2} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{2.7 \times 10^{-4} \mathrm{~m}^{2}}=93 \mathrm{~kg} /\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)=93 \mathrm{~Pa}$
\checkmark The general relationship between the pressure P and the height h of a liquid column in a barometer or manometer is:

$$
P=g d h
$$

Table 5.2	
Unit	Relationship or Definition Units of Pressure
Pascal (Pa)	$\mathrm{kg} /\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)$
Atmosphere (atm)	$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa} \simeq 101 \mathrm{kPa}$
mmHg, or torr	$760 \mathrm{mmHg}=1 \mathrm{~atm}$
Bar	$1.01325 \mathrm{bar}=1 \mathrm{~atm}$

Example 5.1 Converting Units of Pressure

(Q) The pressure of a gas in a flask is measured to be 797.7 mmHg . What is this pressure in pascals and atmospheres?
Solution Conversion to pascals:

$$
797.7 \mathrm{mmHg} \times \frac{1.01325 \times 10^{5} \mathrm{~Pa}}{760 \mathrm{mmHg}}=\mathbf{1 . 0 6 4} \times \mathbf{1 0}^{\mathbf{5}} \mathbf{P a}
$$

Conversion to atmospheres:

$$
797.7 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=\mathbf{1 . 0 5 0} \mathbf{~ a t m}
$$

> 5.2 Empirical Gas Laws
> Boyle's Law: Relating Volume and Pressure

Boyle's law:

$P V=$ constant
(for a given amount of gas at fixed temperature)
the volume of a sample of gas at a given temperature varies inversely with the applied pressure. That is, $V \boldsymbol{\alpha} \mathbf{1 / P}$, where V is the volume, P is the pressure,

> Boyle's experiment:
The volume of the gas at normal atmospheric pressure $(760 \mathrm{mmHg})$ is 100 mL . When the pressure is doubled by adding 760 mm of mercury, the volume is halved (to 50 mL).
Tripling the pressure decreases the volume to one-third of the original (to 33 mL).

(Q) A volume of air occupying $12.0 \mathrm{dm}^{3}$ at 98.9 kPa is compressed to a pressure of 119.0 kPa . The temperature remains constant. What is the new volume?

$$
\begin{gathered}
\mathrm{P}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=\mathrm{P}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}} \\
V_{f}=V_{i} \times \frac{P_{i}}{P_{f}}=12.0 \mathrm{dm}^{3} \times \frac{98.9 \mathrm{kPa}}{119.0 \mathrm{kPa}}=\mathbf{9 . 9 7} \mathrm{dm}^{3}
\end{gathered}
$$

> Charles's Law: Relating Volume and Temperature

$$
\frac{V}{T}=\text { constant } \quad \text { (for a given amount of gas at a fixed pressure) }
$$

$$
\frac{V_{f}}{T_{f}}=\frac{V_{i}}{T_{i}}
$$

Exercise 5.3 If you expect a chemical reaction to produce $4.38 \mathrm{dm}^{3}$ of oxygen, O_{2}, at $19^{\circ} \mathrm{C}$ and 101 kPa , what will be the volume at $25^{\circ} \mathrm{C}$ and 101 kPa ?

First, convert the temperatures to the Kelvin.

$$
\begin{aligned}
& T_{i}=(19+273)=292 \mathrm{~K} \\
& T_{f}=(25+273)=298 \mathrm{~K}
\end{aligned}
$$

Apply Charles's law

$$
V_{f}=V_{i} \times \frac{T_{f}}{T_{i}}=4.38 \mathrm{dm}^{3} \times \frac{298 \mathrm{~K}}{292 \mathrm{~K}}=4.4 \underline{7} 0=4.47 \mathrm{dm}^{3}
$$

> Combined Gas Law: Relating Volume, Temperature, and Pressure
\checkmark Boyle's law ($V \alpha 1 / P$) and Charles's law ($V \alpha T$) can be combined to:

$$
V \propto T / P
$$

$V=$ constant $\times \frac{T}{P}$ or $\frac{P V}{T}=$ constant \quad (for a given amount of gas)

$$
\frac{P_{f} V_{f}}{T_{f}}=\frac{P_{i} V_{i}}{T_{i}}
$$

(Q) A 39.8 mg sample of caffeine gives $10.1 \mathrm{~cm}^{3}$ of N_{2} gas at $23^{\circ} \mathrm{C}$ and 746 mmHg . What is the volume of N_{2} at $0^{\circ} \mathrm{C}$ and 760 mmHg ?
$T_{i}=(23+273) \mathrm{K}=296 \mathrm{~K}$
$T_{f}=(0+273) \mathrm{K}=273 \mathrm{~K}$
$V_{f}=V_{i} \times \frac{P_{i}}{P_{f}} \times \frac{T_{f}}{T_{i}}=10.1 \mathrm{~cm}^{3} \times \frac{746 \mathrm{mmfg}}{760 \mathrm{mmHg}} \times \frac{273 \mathrm{~K}}{296 \mathrm{~K}}=9.14 \mathrm{~cm}^{3}$
(Q) What will be the final pressure of a sample of nitrogen gas with a volume of $950 . \mathrm{m}^{3}$ at 745 torr and $25.0^{\circ} \mathrm{C}$ if it is heated to $60.0^{\circ} \mathrm{C}$ and given a final volume of $1150 \mathrm{~m}^{3}$?

Exercise 5.4
A balloon contains $5.41 \mathrm{dm}^{3}$ of helium, He , at $24^{\circ} \mathrm{C}$ and 101.5 kPa . Suppose the gas in the balloon is heated to $35^{\circ} \mathrm{C}$. If the helium pressure is now 102.8 kPa , what is the volume of the gas?

$$
\begin{aligned}
& T_{i}=(24+273)=297 \mathrm{~K} \\
& T_{f}=(35+273)=308 \mathrm{~K}
\end{aligned}
$$

$$
V_{f}=V_{i} \times \frac{P_{i}}{P_{f}} \times \frac{T_{f}}{T_{i}}=5.41 \mathrm{dm}^{3} \times \frac{101.5 \mathrm{kPa}}{102.8 \mathrm{kPa}} \times \frac{308 \mathrm{~K}}{297 \mathrm{~K}}=5.5 \underline{3} 9=5.54 \mathrm{dm}^{3}
$$

> Avogadro's Law: Relating Volume and Amount
\checkmark French chemist Joseph Louis Gay-Lussac concluded from experiments on gas reactions that: the volumes of reactant gases at the same pressure and temperature are in ratios of small whole numbers (the law of combining volumes).

$$
\underset{2 \text { volumes }}{2 \mathrm{H}_{2}(g)}+\underset{\text { 1 volume }}{\mathrm{O}_{2}(g)} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

\checkmark Avogadro's law: equal volumes of any two gases at the same temperature and pressure contain the same number of molecules.
\checkmark volume of one mole of gas is called the molar gas volume, V_{m}.

> Avogadro's law:
> $V_{m}=$ specific constant ($=22.4 \mathrm{~L} / \mathrm{mol}$ at STP)
> (depending on T and P but independent of the gas)

STP = Standard Temperature and Pressure $\left(0^{\circ} \mathrm{C}\right.$ and 1 atm$)$

> 5.3 The Ideal Gas Law $\quad P V=n R T$

(Q) How many grams of oxygen are there in a $50.0-\mathrm{L}$ gas cylinder at $21^{\circ} \mathrm{C}$ when the oxygen pressure is 15.7 atm ?

Exercise 5.6
What is the pressure in a $50.0-\mathrm{L}$ gas cylinder that contains 3.03 kg of oxygen, O_{2}, at $23^{\circ} \mathrm{C}$?
(Q) Calculate the volume (in L) occupied by 7.40 g of NH_{3} at STP

$$
V=7.40 \mathrm{~g}_{2} \mathrm{NH}_{3} \times \frac{1 \mathrm{moLnH}_{3}}{17.03 \mathrm{~g} \mathrm{NH}_{3}} \times \frac{22.41 \mathrm{~L}}{1{\mathrm{~mol} \mathrm{NH}_{3}}^{2}}
$$

$$
=9.74 \mathrm{~L}
$$

$>$ Gas Density; Molecular-Weight Determination
$P M_{m}=d R T \quad d$ is the density of the gas in g / L
(Q) What is the density of oxygen, O_{2}, in grams per liter at $25^{\circ} \mathrm{C}$ and 0.850 atm ?
$d=P M_{m} / R T=(0.85 \times 32) /(0.082 \times 298)=1.11 \mathrm{~g} / \mathrm{L}$

Exercise 5.8 A sample of a gaseous substance at $25^{\circ} \mathrm{C}$ and 0.862 atm . has a density of $2.26 \mathrm{~g} / \mathrm{L}$. What is the molecular weight of the substance?
$M_{m}=d R T / P=(2.26 \times 0.082 \times 298) / 0.862=64.1 \mathrm{~g} / \mathrm{mol}$
5.4 Stoichiometry Problems Involving Gas Volumes
$6 \mathrm{NaN}_{3}(s)+\mathrm{Fe}_{2} \mathrm{O}_{3}(s) \rightarrow 3 \mathrm{Na}_{2} \mathrm{O}(s)+2 \mathrm{Fe}(s)+9 \mathrm{~N}_{2}(g)$
Calculate the volume of N_{2} generated at $80^{\circ} \mathrm{C}$ and 823 mmHg by the decomposition of 60.0 g of NaN_{3}

Exercise 5.9 How many liters of chlorine gas, Cl_{2}, can be obtained at $40^{\circ} \mathrm{C}$ and 787 mmHg from 9.41 g of hydrogen chloride, HCl , according to the following equation?
$2 \mathrm{KMnO}_{4}(s)+16 \mathrm{HCl}(a q) \rightarrow 8 \mathrm{H}_{2} \mathrm{O}(\Omega)+2 \mathrm{KCl}(a q)+2 \mathrm{MnCl}_{2}(a q)+5 \mathrm{Cl}_{2}(g)$

5.5 Gas Mixtures; Law of Partial Pressures

> Partial Pressures and Mole Fractions
\checkmark Dalton's law of partial pressures:
The pressure exerted by a particular gas in a mixture is the partial pressure of that gas

Oil is added via the funnel until the flask is filled.

Flask A

Pressure $=$
152 mmHg
$O=\mathrm{He}$
$\theta=\mathrm{H}_{2}$

Pressure $=$ $608 \mathrm{mmHg} \mathrm{H}_{2}$

Flask B

$$
\begin{aligned}
& \text { Dalton's law of partial pressures: } \\
& P=P_{A}+P_{B}+P_{C}+\cdots
\end{aligned}
$$

\checkmark The individual partial pressures follow the ideal gas law. For component $A, \quad P_{A} V=n_{A} R T$

$$
\text { Mole fraction of } A=\frac{n_{A}}{n}=\frac{P_{A}}{P}
$$

(Q) A $1.00-\mathrm{L}$ sample of dry air at $25^{\circ} \mathrm{C}$ and 786 mmHg contains $0.925 \mathrm{~g} \mathrm{~N}_{2}$, plus other gases including oxygen, argon, and carbon dioxide.
a. What is the partial pressure (in mmHg) of N_{2} in the air sample? b. What is the mole fraction and mole percent of N_{2} in the mixture? $\quad 0.925 \mathrm{gN}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.0 \mathrm{gN}_{2}}=0.0330 \mathrm{~mol} \mathrm{~N}_{2}$
$P_{\mathrm{N}_{2}}=\frac{n_{\mathrm{N}_{2}} R T}{V}=\frac{0.0330 \mathrm{~mol} \times 0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol}) \times 298 \mathrm{~K}}{1.00 \mathrm{~K}}=0.807 \mathrm{~atm}(=613 \mathbf{m m H g})$
Mole fraction of $\mathrm{N}_{2}=\frac{P_{\mathrm{N}_{2}}}{P}=\frac{613 \mathrm{mmHg}}{786 \mathrm{mmHg}}=\mathbf{0 . 7 8 0}$

Air contains 78.0 mole percent of N_{2}.
(Q) Each of the color spheres represents a different gas molecule. Calculate the partial pressures of the gases if the total pressure is 2.6 atm .

Mole fraction of $A=\frac{n_{A}}{n}=\frac{P_{A}}{P}$

(Q) A mixture consists of 122 moles of $\mathrm{N}_{2}, 137$ moles of $\mathrm{C}_{3} \mathrm{H}_{8}$, and 212 moles of CO_{2} at 200 K in a 75.0 L container. What is the total pressure of the gas and the partial pressure of CO_{2} ?
A. $46.4 \mathrm{~atm}, 20.9 \mathrm{~atm}$
B. $103 \mathrm{~atm}, 26.7 \mathrm{~atm}$

$$
\begin{aligned}
& \mathrm{P}_{\text {total }}=\frac{(471 \mathrm{moles})\left(0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(200 \mathrm{~K})}{75.0 \mathrm{~L}} \\
& \mathrm{P}_{\text {total }}=103 \mathrm{~atm}
\end{aligned}
$$

C. $103 \mathrm{~atm}, 46.4 \mathrm{~atm}$
D. $103 \mathrm{~atm}, 29.9 \mathrm{~atm}$
E. $46.4 \mathrm{~atm}, 46.4 \mathrm{~atm}$

$$
\text { mole fraction } \mathrm{CO}_{2}: \frac{212 \text { moles } \mathrm{CO}_{2}}{122+137+212 \text { total }}=0.450
$$

$$
\begin{gathered}
\mathrm{P}_{\mathrm{CO}_{2}}=\left(\chi_{\mathrm{CO}_{2}}\right)\left(\mathrm{P}_{\mathrm{total}}\right)=(0.450)(103 \mathrm{~atm}) \\
\mathrm{P}_{\mathrm{CO}_{2}}=46.4 \mathrm{~atm}
\end{gathered}
$$

(Q) A mixture of 250 mL of methane, CH_{4}, at $35^{\circ} \mathrm{C}$ and 0.55 atm and 750 mL of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, at $35^{\circ} \mathrm{C}$ and 1.5 atm was introduced into a 10.0 L container. What is the mole fraction of methane in the mixture?

A. 0.50
B. 0.11 Mole fraction of $A=\frac{n_{A}}{n}=\frac{P_{A}}{P}$

$$
\begin{aligned}
P_{\mathrm{CH}_{4}} & =\frac{0.55 \mathrm{~atm} 0.250 \mathrm{~L}}{10.0 \mathrm{~L}}=0.0138 \mathrm{~atm} \\
P_{\mathrm{c}_{3} \mathrm{H}_{8}} & =\frac{1.5 \mathrm{~atm} 0.750 \mathrm{~L}}{10.0 \mathrm{~L}}=0.112 \mathrm{~atm} \\
\mathrm{CH}_{4} & =\frac{0.0138 \mathrm{~atm}}{0.0138 \mathrm{~atm}+0.112 \mathrm{~atm}}=0.110
\end{aligned}
$$

