EBBING - GAMMON

Molecular Geometry and Chemical Bonding Theory

General Chemistry ELEVENTH EDITION

©2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

10.1 Valence-Shell Electron-Pair Repulsion (VSEPR) Model

3

less than 109.5°

Number of Number of Molecular Bonding Nonbonding Geometry Pairs (E) Pairs 6 0 5 1 4 2

Molecular Shape AX₆ Octahedral (**e.g.**, SF₆) **Bond angles** 180°,90° AX₅E **Square Pyramidal**

90

М

(**e.g.**, BrF₅) Bond angles 90°

> AX_4E_2 Square planar (**e.g.**, XeF₄) **Bond angles** 90°, 180° 6

Summary of Molecular Geometries

VSEPR is based on minimizing electron repulsion in the molecule

 The direction in space of the bonding pairs gives the molecular geometry

(Q) Predict the geometry of the following molecules or ions, using the VSEPR method:

- a. $BeCl_2$ b. NO_2^- c. $SiCl_4$ d. ClO_3^- e. OF_2 f. $TeCl_4$ g. ICl_3
- > Applying the VSEPR Model to Larger Molecules

10.2 Dipole Moment and Molecular Geometry

 Alignment of polar molecules by an electric field

✓ dipole moment is a quantitative measure of the degree of charge separation in <u>a molecule</u> and is therefore an indicator of the polarity of the molecule $\mu = q \times d$

- q = positive charge
- -q = negative charge
 - d = distance

10.43 AsF₃ has a dipole moment of 2.59 D. Which of the following geometries are possible: trigonal planar, trigonal pyramidal, or T-shaped?

- ✓ dipole moment of HCl is 1.08 D. ✓ SI units: coulomb x meter (C·m) ✓ 1 D = 3.34×10^{-30} C·m $\delta^{-} 2\delta^{+} \delta^{-}$ out polar compound O=C=O out polar compound $\leftrightarrow + + \rightarrow$ bond dipole
- (linear, trigonal planar, and tetrahedral) give molecules of zero dipole moment; that is, the molecules are *nonpolar*

Table 10.1 Relation	onship Between Molecular Geometry and Dip	ole Moment	e
Formula	Molecular Geometry	Dipole Moment* HCI HTTL	
AX	Linear	Can be nonzero	
AX ₂	Linear	Zero	٦Ø
	Bent	Can be nonzero	U
AX ₃	Trigonal planar	Zero	
	Trigonal pyramidal	Can be nonzero	
	T-shaped	Can be nonzero	
AX_4	Tetrahedral	Zero	
	Square planar AX L	Zero	
	Seesaw Auc	Can be nonzero	
AX ₅	Trigonal bipyramidal	Zero	
	Square pyramidal	Can be nonzero	12
AX ₆	Octahedral	Zero	

10.3 Valence Bond Theory

Basic Theory

A bond forms between two atoms when the following conditions are met: 5^{2}

- 1. The orbitals containing the electrons overlap.
- 2. The sum of the electrons in both orbitals is no more than two.

H + H → H₂ 1s¹ 1s¹ → Total 2e in the newly formed H₂ orbital

- He + He \rightarrow He₂ (does not occur) 1s² 1s² \rightarrow Total 4e (XXXXX)
- \checkmark The strength of bonding depends on orbital overlap.
- To obtain maximum overlap, orbitals other than s bond only in given directions.
- Bonding in HCI
 H: 1s¹ CI:1s²2s²2p⁶3s²3p⁵

- > Hybrid Orbitals
- \checkmark Bonding in CH₄ promotion Energy تعوي العربي الروابط متحادثة مر العربي المحربيات المحرفة مر مرجع من يجون المحرفي C atom C atom (ground state) (promoted)
 - ✓ Experiment shows that the four C-H bonds in CH₄ are identical. This implies that the carbon orbitals involved in bonding are also equivalent.
 - \checkmark \rightarrow Hybrid orbitals are used

mport Xizakion

✓ The number of hybrid orbitals formed always equals the number of atomic orbitals used.

- ✓ Shape of a single sp^3 hybrid orbital.
- Each orbital consists of two lobes. One lobe is small, but dense, and concentrated near the nucleus.
- ✓ The other lobe is large, but diffuse.
- ✓ Bonding occurs with the large lobe, since it extends farther from the nucleus.
- ✓ Four hybrid orbitals are arranged tetrahedrally in space. (Small lobes are omitted here for clarity, and large lobes are stylized and greatly narrowed for ease in depicting the directional bonding.)

- ✓ Bonding in CH_4 .
- ✓ Each C—H bond is formed by the overlap of:
- 1s orbital from a hydrogen atom + one sp³ hybrid orbital of the carbon atom.

Number of hybrid orbitals formed = number of atomic orbitals used.

s + p \rightarrow 2 x sp s + 2p \rightarrow 3 X sp² s + 3p \rightarrow 4 X sp³ $4 \times 3^{2} \times 550^{3}$

18

How to figure out the hybridization via Lewis structures !

➢ More Than Eight Electrons About a Central Atom
PF₅ → sp³d
SF₆ → sp³d²

10.4 Description of Multiple Bonding

- More than one orbital from each bonding atom might overlap
 One hybrid orbital is needed for each bond (whether a single or a multiple bond) and for each lone pair
- ➢ Bonding in ethylene H₂C=CH₂

(Q) Describe the bonding on a given N atom in dinitrogen difluoride, N_2F_2 , using valence bond theory.

10.53 Carbonyl fluoride, COF₂, is an extremely poisonous gas used in organofluorine synthesis. Give the valence bond description of the carbonyl fluoride molecule. (Both fluorine atoms are attached to the carbon atom.)
Nitrogen, N₂, makes up about 80% of the earth's atmosphere. Give the valence bond description of this molecule.

 \checkmark cis and trans isomers of N₂F₂

✓ Lack of geometric isomers in 1,2-dichloroethane

trans

N = N

cis

F

01

Main-Group Elements s subshell fills									Main-Group Elements p subshell fills									
,	1 1A		Atomic number H Symbol															18 8A
1	$\frac{1}{\mathbf{H}}$ $1s^1$	2 2A		Valence-shell configuration										14 4A	15 5A	16 6A	17 7A	2 He 1 <i>s</i> ²
2	3 Li 2s ¹	$\frac{4}{\mathbf{Be}}$ $2s^2$		Transition Metals d subshell fills									5 B $2s^22p^1$	$6 \\ C \\ 2s^2 2p^2$	$ \begin{array}{c} 7 \\ \mathbf{N} \\ 2s^2 2p^3 \end{array} $		9 \mathbf{F} $2s^22p^5$	10 Ne $2s^22p^6$
3	11 Na 3s ¹	12 Mg 3s ²	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 8B	10	11 1 B	12 2B	13 Al $3s^23p^1$	14 Si $3s^23p^2$	$ \begin{array}{c} 15 \\ \mathbf{P} \\ 3s^2 3p^3 \end{array} $	16 S $3s^23p^4$	17 Cl $3s^23p^5$	18 Ar $3s^23p^6$
4	19 K 4s ¹	20 Ca 4 <i>s</i> ²	21 Sc $3d^{1}4s^{2}$	22Ti $3d^24s^2$	23 V $3d^34s^2$	24 Cr 3d ⁵ 4s ¹	25 Mn 3d ⁵ 4s ²	26 Fe 3d ⁶ 4s ²	27 Co $3d^{7}4s^{2}$	28 Ni 3 <i>d</i> ⁸ 4 <i>s</i> ²	29 Cu 3d ¹⁰ 4s ¹	$30 \\ Zn \\ 3d^{10}4s^2$	31 Ga $4s^24p^1$	32 Ge $4s^24p^2$	33 As $4s^24p^3$	34 Se 4 <i>s</i> ² 4 <i>p</i> ⁴	35 Br 4 <i>s</i> ² 4 <i>p</i> ⁵	36 Kr 4 <i>s</i> ² 4 <i>p</i> ⁶
5	37 Rb 5s ¹	38 Sr 5s ²	39 Y 4d ¹ 5s ²	$40 \\ \mathbf{Zr} \\ 4d^25s^2$	41 Nb $4d^{4}5s^{1}$	42 Mo 4d ⁵ 5s ¹	43 Tc 4d ⁵ 5s ²	$44 \\ \mathbf{Ru} \\ 4d^75s^1$	$45 \\ Rh \\ 4d^85s^1$	46 Pd 4 <i>d</i> ¹⁰	47 Ag 4d ¹⁰ 5s ¹	$48 \\ Cd \\ 4d^{10}5s^2$	49 In 5 <i>s</i> ² 5 <i>p</i> ¹	$50 \\ Sn \\ 5s^2 5p^2$	51 Sb $5s^25p^3$	52 Te 5s ² 5p ⁴	53 I 5s ² 5p ⁵	54 Xe 5 <i>s</i> ² 5 <i>p</i> ⁶
6	55 Cs 6s ¹	56 Ba 6s ²	57-71 Lanthanides	$ \begin{array}{c} 72\\ \mathbf{Hf}\\ 5d^26s^2 \end{array} $	73 Ta $5d^36s^2$	74 W 5d ⁴ 6s ²	75 Re 5d ⁵ 6s ²	76 Os $5d^{6}6s^{2}$	77 Ir $5d^{7}6s^{2}$	78 Pt $5d^{9}6s^{1}$	79 Au 5d ¹⁰ 6s ¹	$80 \\ Hg \\ 5d^{10}6s^2$	⁸¹ Tl 6 <i>s</i> ² 6 <i>p</i> ¹	82 Pb 6 <i>s</i> ² 6 <i>p</i> ²	83 Bi 6 <i>s</i> ² 6 <i>p</i> ³	84 Po 6s ² 6p ⁴	85 At 6 <i>s</i> ² 6 <i>p</i> ⁵	86 Rn 6 <i>s</i> ² 6 <i>p</i> ⁶
7	87 Fr 7 <i>s</i> ¹	88 Ra 7 <i>s</i> ²	89-103 Actinides	$104 \\ \mathbf{Rf} \\ 6d^2 7s^2$	105 Db $6d^37s^2$	$106 \\ \mathbf{Sg}_{\text{Convert}} \\ 6d^47s^2$	107 Bh 6d ⁵ 7s ²	108 Hs 6d ⁶ 7s ²	109 Mt $6d^77s^2$	110 Uun $6d^87s^2$	\mathbf{Rg} $6d^97s^2$	112 Cn 6d ¹⁰ 7s ²	113 Uut 7 <i>s</i> ² 7 <i>p</i> ¹	114 Uuq 7 <i>s</i> ² 7 <i>p</i> ²	115 Uup 7 <i>s</i> ² 7 <i>p</i> ³	116 Uuh 7 <i>s</i> ² 7 <i>p</i> ⁴	117 Uus $7s^27p^5$	118 Uuo 7 <i>s</i> ² 7 <i>p</i> ⁶
								Inn	er Tra	nsitio	n Meta	ıls						

Inner Transition Metals f subshell fills

. .

														ſ
57 La $5d^{1}6s^{2}$	58 Ce $4f^{1}5d^{1}6s^{2}$	59 Pr 4f ³ 6s ²	$60 \\ Nd \\ 4f^46s^2$	61 Pm $4f^{5}6s^{2}$	62 Sm 4f ⁶ 6s ²	63 Eu $4f^{7}6s^{2}$	64 Gd $4f^{7}5d^{1}6s^{2}$	$65 \\ Tb \\ 4f^{9}6s^{2}$	$66 \\ \mathbf{Dy} \\ 4f^{10}6s^2$	67 Ho $4f^{11}6s^2$	$68 \\ \mathbf{Er} \\ 4f^{12}6s^2$	$69 \\ Tm \\ 4f^{13}6s^2$	70 Yb $4f^{14}6s^2$	71 Lu 4f ¹⁴ 5d ¹ 6s ²
89 Ac 6d ¹ 7s ²	90 Th $6d^27s^2$	91 Pa 5f ² 6d ¹ 7s ²	92 U 5f ³ 6d ¹ 7s ²	93 Np 5f ⁴ 6d ¹ 7s ²	94 Pu 5f ⁶ 7s ²	95 Am 5f ⁷ 7s ²	96 Cm $5f^{7}6d^{1}7s^{2}$	97 Bk 5f ⁹ 7s ²	98 Cf 5f ¹⁰ 7s ²	99 Es $5f^{11}7s^2$	$100 \\ Fm \\ 5f^{12}7s^2$	$101 \\ Md \\ 5f^{13}7s^2$	102 No $5f^{14}7s^2$	103 Lr 5f ¹⁴ 7s ² 7p ¹