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Dr. Mohammad Hussein PHY 105 - Fall 2022           Lecture: 11*     Date: 27/11/2022 

1. In Section 8.4, we have assumed objects remain rigid when external forces act on them. In reality, all 

objects are somewhat elastic (deformable) to some extent, even though they do not appear to be. That 

is, it is possible to change the shape or the size (or both) of an object by applying external forces.  

2. If a rigid object is deformed a small amount, it will return to its original size and shape when the 

deforming force is removed. If a rigid object is deformed past a point called its elastic limit, it will not 

return to its original size and shape but will remain permanently deformed. If a rigid object is deformed 

too far beyond its elastic limit, it will break, or fracture, as we will see in item 9 (Section 9.6). 

3. Deformations of solids are usually classified into three types:                                    

stretching (or pulling) - (Figure 9.20), compression (or pushing) - (Figure 9.21), or shearing (or twisting) - 

(Figure 9.23). A comparison between these three patterns is displayed in Figure 9.22. What these three 

deformations have in common is that a stress, or deforming force per unit area, produces a strain, or 

unit deformation.   

4. Recall the causality of Newton’s 2nd law: stress is applied to the object by external agents, whereas 

strain is the object’s response to the stress; strain is a measure of how much the object has been 

deformed. Stretching, or tension, is associated with tensile stress. Compression can be produced by 

hydrostatic stress. Shear is produced by shearing stress (by scissors).  

5. Although stress and strain take different forms for the three types of deformation, they are related 

linearly through a constant called the modulus of elasticity 

stress = [modulus of elasticity] x [strain]               

This empirical relationship applies as long as the elastic limit of the material is not exceeded. In this 

lecture we consider these three types of deformation and define an elastic modulus for each:              

1. Young’s modulus measures the resistance of a solid to a change in its length.                             

2. Bulk modulus measures the resistance of solids or fluids (liquids and gases - chapter 10) to changes in 

their volume.                                      

3. Shear modulus measures the resistance to motion of the planes within a solid parallel to each other.  

Insight: it’s possible to establish a sort of analogy between the general empirical equation given above 

and Newton’s 2nd law. The modulus, being a measure of the resistance to deformation, is analogous to 

the mass (inertia) in Newton’s 2nd law. By the same token, stress and strain are analogous to force and 

acceleration respectively. That being said, we will learn in item 6 that strain is a pure number 

(dimensionless), while the modulus has the dimension of force per area.  
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6. Changing the length of a solid 

In the case of tension, a force F is applied to opposite ends of a solid rod of length L and the rod 

stretches to a new length, L + ∆L, as shown in the Figure 1 below. The stress for stretching is defined as 

the force, F, per unit area, A, applied to the end of an object [you will come to know in chapter 10 that 

the pressure is force per unit area]. The strain is defined as the fractional change in length of the 

object, ∆L/L. Thus, stain is a pure number (dimensionless). The relationship between stress and strain 

up to the elastic limit is then 

𝐹

𝐴
= ∆𝑃 = 𝐸 

∆𝐿

𝐿
   Equation 9.5, 

where E (the constant of proportionality) is called the elastic modulus, or Young’s modulus, named for 

the English physicist Thomas Young (1773–1829). One can rewrite Equation 9.5 to get Equation 9.4:  

∆𝐿 =
1

𝐸

𝐹

𝐴
 𝐿 =  

1

𝐸
∆𝑃 𝐿   , Equation 9.4. 

 

 

 

 

 

 

 

 

 

 

Equation 9.4 says that the stretch ∆L increases by an amount proportional to the force, ∆L ∝ F. The 

stretch ∆L is also proportional to the initial length of the rod, L. Finally, the amount of stretch for a given 

force F is inversely proportional to the cross-sectional area A of the rod. For example, a rod with a cross-

sectional area 2A is like two rods of cross-sectional area A placed side by side. Thus, applying a force F to 

a rod of area 2A is equivalent to applying a force F/2 to two rods of area A. The result is half the stretch 

when the area is doubled; that is, ∆L ∝ 1/A. This is the theme of Exercise E - page 242 (answer is b). 

 

 

Figure 1: (a) Object before force is applied. (b) Object after force is applied to its to 

opposite ends by a pulling force. Note: Tension can also be applied by pushing, with a 

resulting negative change in length (not shown). 
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Comparing the two sides of Equation 9.5, we see that Young’s modulus has the units of force per area 

(N/m2). Notice that Young’s modulus depends only on the type of material and not on its size or shape:  

It is a material property not an object property. Some typical values of Young’s modulus are given in 

Table 9.1. Notice that the values vary from material to material, but are all rather large.                         

This means that a large force is required to cause even a small stretch in a solid (E is in the denominator 

in Equation 9.4).                    

For your information (especially for the girls): Diamond Young’s modulus is about 1000 – 1200 109 N/m2. 

Linear compression can be treated in a manner similar to stretching for most materials, within the 

elastic limits. One can say that compression is the exact opposite of stretching (read the caption of 

Figure 1). Thus Equations 9.5 and 9.4 apply equally well to a compression and stretch. However, some 

materials have a slightly different Young’s modulus for compression and stretching. For example, 

human bones under tension (stretching) have a Young’s modulus of 15 x 109 N/m2, while bones under 

compression have a slightly smaller Young’s modulus of 9.4 x 109 N/m2. Example 1 addresses this issue.  

Example 1:  

A PHY-105 student carries a 21-kg duffel bag in one hand.                      

i) Assuming the humerus (the upper arm bone) supports the 

entire weight of the bag, determine the amount by which 

the bone stretches. (The humerus may be assumed to be 33 

cm in length and to have an effective cross-sectional area of 

5.2 x 10-4 m2.)                    

The force applied to the bone is simply the weight of the 

duffel bag, F = mg, with = 21 kg. (We ignore the relatively 

small weight of the forearm and hand.) Simply, recall 

Equation 9.4 and substitute the given numerical values into 

it:  

 ∆𝐿 =
1

𝐸

𝐹

𝐴
𝐿 ,  ∆𝐿 = 8.9 x 10-6 m.  

We find that the amount of stretch is imperceptibly small. 

The reason for this, of course, is that Young’s modulus is 

such a large number.  

ii) If the bone had been compressed rather than stretched 

by the same applied force, its change in length, though still 

minuscule, would have been greater by a factor of …? Fill in 

the gap.                                       

The factor is 15/9.4.  

iii) Please do Example 9.10 of your ‘tedious’ text! Enjoy.  
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7. Changing the volume of a solid 

The stress related to volume compression is caused by a force per unit area applied to the entire 

surface area of an object for example, one submerged in a liquid (Figure 2). The resulting strain is the 

fractional change in the volume of the object, ∆V/V. The modulus of elasticity in this case is the bulk 

modulus, B. 

 

 

If a piece of Styrofoam (used for making food containers) is taken deep into the ocean, the tremendous 

pressure of the water causes it to shrink to a fraction of its original volume. Styrofoam has a very small 

bulk modulus, which means that even a relatively small increase in pressure can cause a large decrease 

in volume. This is an extreme example of the volume change that occurs in all solids when the pressure 

of their surroundings is changed.  

The general situation is illustrated in Figure 3, where we show a spherical solid whose volume decreases 

by the amount ∆V when the pressure acting on it increases by the amount ∆P. Experiments show that 

the pressure difference required to cause a given change in volume, ∆V, is proportional to ∆V and 

inversely proportional to the initial volume of the object, V.  Therefore, we can write ∆P as follows: 

𝐹

𝐴
= ∆𝑃 =  −𝐵 [

∆𝑉

𝑉
]    Equation 9.7, or 

∆𝑉 = −
1

𝐵

𝐹

𝐴
 𝑉 = −

1

𝐵
∆𝑃 𝑉. 

Notice that the expressions (Equation 9.5) and (Equation 9.7) are similar in structure, and follow the 

general equation given in item 5 on page 1.  

 

Figure 2: Compression of an object by fluid pressure; (a) object 

before compression; (b) object after compression. Notice that 

the force applies only to the ends of the object in Figure 1, while 

here the force applies over the entire object.    

 
Figure 3  
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Like Young’s modulus, the bulk modulus is a positive quantity with units of N/m2. The negative sign 

given in Equation 9.7 means that the volume decreases with an increase in pressure. Some typical 

values of the bulk modulus are given in Table 9.1. Since liquids and gases don’t have a fixed shape, only 

the bulk modulus (not the Young’s or shear moduli) applies to them. Note the extremely large jump in 

the bulk modulus from air, which is a gas and can be compressed rather easily, to liquids such as 

mercury and water. Solids such as granite and metals have values for the bulk modulus that are higher 

than those of liquids by a factor between 20 and 80, indicating that even small volume changes require 

large changes in pressure.  

Example 2: 

A solid brass sphere is initially surrounded by air, and the air pressure exerted on it is 1.0 x 105 N/m2; the 

normal atmospheric pressure (as will be discussed in chapter 10). The sphere is lowered into the ocean 

to a depth where the pressure is 2.0 x 107 N/m2. The volume of the sphere in air is 0.50 m3. By how 

much does this volume change once the sphere is submerged? 

The pressure squeezes the sphere and reduces its volume. Recall Equation 9.7 and substitute the given 

numerical values into it (Table 9.1 lists that the bulk modulus for brass is 80 x 109 N/m2): −1.2 x 10-4 m3. 

The negative sign indicates that the volume of the sphere decreases. 

8. Changing the shape of a solid 

Another type of deformation, referred to as a shear 

deformation, changes the shape of a solid. Consider a 

book of thickness L0 resting on a table, as shown in 

Figure 4. A force F is applied to the right on the top 

cover of the book, and static friction applies a force F 

to the left on the bottom cover of the book. The result 

is that the book remains at rest but becomes slanted 

by the amount ∆x. The force required to cause a given 

amount of slant is proportional to ∆x, inversely 

proportional to the thickness of the book L0, and proportional to the surface area A of the book’s 

cover; that is, F ∝ A ∆x / L0. Writing this as an equality, we have 

𝐹

𝐴
= ∆𝑃 = 𝐺 

∆𝑥

𝐿0
, Equation 9.6 or 

 ∆𝑥 =
1

𝐺

𝐹

𝐴
 𝐿0 =

1

𝐺
∆𝑃 𝐿0   . 

The constant of proportionality in this case is the shear modulus, G. Like Young’s modulus and the bulk 

modulus, the shear modulus is a positive quantity and has the units N/m2. Typical values of the shear 

modulus are collected in Table 9.1. As with the other two moduli, the shear modulus is large in 

 

Figure 4  
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magnitude, meaning that most solids require a large force to cause even a small amount of shear. From 

the values listed in Table 9.1, one can infer that G is generally one-half to one-third E for all the solids 

but the human bone! For human bones, the G value is about 5 times larger than the E value, meaning 

that the resistance to fracture (crack) in human bones is greater in shear than in tension! In item 6 we 

knew that bones under compression have a slightly smaller E than under stretching. Orthopedic 

surgeons test and analyze measurements of human bone fatigue under shear, tension, and 

compression.    

The expressions 
𝐹

𝐴
= ∆𝑃 = 𝐸 

∆𝐿

𝐿
 (Equation 9.5) and 

𝐹

𝐴
= ∆𝑃 = 𝐺 

∆𝑥

𝐿0
 (Equation 9.6) are similar in 

structure, but it’s important to be aware of their differences as well. For example, the term L in the 

Young’s modulus equation refers to the length of a solid measured in the direction of the applied force 

(Figure 1). In contrast, L0 in the shear modulus equation refers to the thickness of the solid as measured 

in a direction perpendicular to the applied force (Figure 4). Similarly, the cross-sectional area of the 

solid A in Equation 9.5 is perpendicular to the applied force. In contrast, the area A in Equation 9.6 is the 

area of the solid in the plane of the applied force, i.e. parallel to the applied force. 

 

Example 3: 

A horizontal force of 1.3 N is applied 

to the top of a stack of pancakes 16 

cm in diameter and 8.5 cm high. The 

result is a shear deformation of 2.4 

cm.  

i) What is the shear modulus for 

these pancakes? 

In our sketch, we see the stack of pancakes deformed by a force of magnitude F = 1.3 N to the right at 

the top of the stack and a force of equal magnitude to the left at the bottom of the stack. The result is a 

shear deformation of 2.4 cm. Recall Equation 9.6 and solve for G, where A = πd2/4: G = 230 N/m2.  

Notice the small value of the pancakes’ shear modulus, especially when compared to the shear modulus 

of a typical solid. This is a reflection of the fact that the pancake stack is easily deformed (or say eaten!).  

ii) Suppose the stack of pancakes is doubled in height, but everything else in the system remains the 

same. By what factor does the shear deformation change?                                    

The shear deformation doubles. 
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9. Section 9.6: Fracture  

As noted earlier (item 2), the stress 

applied to an object is proportional to the 

strain as long as the elastic limit of the 

material is not exceeded. Figure 5 (or 

Figure 9.19 in your text) shows a typical 

stress-strain diagram for a ductile (easily 

drawn into a wire) metal under tension. 

Up to the proportional limit, the ductile 

metal responds linearly to stress; meaning 

that Equations 9.5, 9.6, and 9.7 do still 

hold. If the stress (the cause) is removed, 

the material will return to its original 

length (the deformation-response 

vanishes). When a deformation is 

reversible, we say that it is an elastic 

deformation. If stress is applied past the proportional limit, the material will continue to lengthen until 

it reaches its yield point (elastic limit point as depicted in Figure 9.19). If stress is applied between the 

proportional limit and the fracture point (breaking point as depicted in Figure 9.19) and then is 

removed, the material will not return to its original length but will be permanently deformed (it enters 

the so-called plastic region as depicted in Figure 9.19). The yield point is the point where the stress 

causes sudden deformation without any increase in force as can be seen from the flattening of the curve 

(see Figure 5). Additional stress will continue to stretch the material until it reaches its fracture point, 

where it breaks or tears apart (see Figure 9.24). This breaking stress (at which the maximum elongation 

is reached) is also called the ultimate stress.  

Some approximate breaking stresses for tension, compression, and shear are given in Table 9.2 (called 

ultimate strength). Notice that in the case of tension, the ultimate strength is also called tensile 

strength. Because these values give the maximum stress that a material can withstand before it breaks, 

it is therefore necessary to maintain a safety factor of from 3 to perhaps 10 or more, i.e. the actual 

stress on a material should not exceed 1/10 to 1/3 of the values given in the Table. You may encounter 

tables of allowable stresses in which appropriate safety factors have been included.  

Many materials have different breaking points for stretching and compression. The most notable 

example is concrete, which resists compression much better than stretching (please ponder the values 

listed in Table 9.2 for concrete). Can you now explain why concrete can be used as vertical columns 

placed under compression (Figure 9.21) while can’t be used as beams? On the other hand, can you 

explain why cables of steel are used in suspension bridges (like Wadi Abdoun bridge; the only cable-

stayed bridge in Jordan!). The steel cables have significant forces pulling on them from either end. As a 

result, they are under huge tension, yet we safely use the bridge because we know that the steel can 

withstand such tensile strength. Relevant to this issue is the ‘reinforced’ concrete, in which steel rods 

 

Figure 5: A typical stress-strain diagram for a ductile metal 

under tension showing the proportional limit, the yield point, 

and the fracture point. Figure 9.19 in your text displays the 

applied force (F) versus elongation (∆L) though. 

https://en.wikipedia.org/wiki/Cable-stayed_bridge
https://en.wikipedia.org/wiki/Cable-stayed_bridge
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are added to it in places where greater tolerance of stretching is required. A steel rod resists stretching 

much better than compression (500-2500 vs 500 in Table 9.2), under which it can buckle.            

For your information (especially for the girls): Gold is the most ductile of all metals. For example, one 

gram of gold can be drawn into a wire 2.40km long!  

10. Section 9.4: Stability and balance 

For a skyscraper or a bridge, architects and civil engineers need to 

worry about the ability of the structure to remain standing under 

the influence of external forces.  

Let’s try to quantify the concept of stability by looking at Figure 6 a, 

which shows a box in static equilibrium, resting on a horizontal 

surface. Our experience tells us that if we use a finger to push with 

a small force in the way shown in the figure (pushing against the 

upper edge of a box), the box remains in the same position. The 

small force we exert on the box is exactly balanced by the force of 

static friction between the box and the supporting surface. The net 

force is zero, and there is no motion. If we steadily increase the 

magnitude of the force we apply, there are two possible outcomes: 

If the static friction force is not sufficient to counterbalance the 

force exerted by the finger, the box begins to slide to the right. Or, 

if the torque due to the weight of the box acting at its center of 

gravity is less than the torque due the applied force and the friction 

force, the box starts to tilt as shown in Figure 6 b. Thus, the static 

equilibrium of the box is stable with respect to small external 

forces, but a sufficiently large external force destroys the 

equilibrium. 

This simple example illustrates the characteristic of stability. Engineers need to be able to calculate the 

maximum external forces and torques that can be present without undermining the stability of a 

structure. 

11. Quantitative condition for stability  

In order to be able to quantify the stability of an equilibrium situation, we need to establish a 

relationship between potential energy and force (say in one dimension). This means we need calculus to 

get the 2nd gradient derivative of the potential energy function U(x) with respect to the position vector x. 

And depending on the sign of the 2nd derivative, we can distinguish three different cases of stability. 

Therefore, and because PHY 105 is not a calculus-based course (hmm…!), here you are the three cases 

as a rule of thumb (cheer up!). 

 

Figure 6  
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Case 1 Stable Equilibrium (Figure 7a) 

A small deviation from the equilibrium position creates a restoring 

force that drives the system back to the equilibrium point. This 

situation is illustrated in Figure 7a: If the red dot is moved away from 

its equilibrium position at x0 in either the positive or the negative 

direction and released, it will return to the equilibrium position. 

Case 2 Unstable Equilibrium (Figure 7b) 

A small deviation from the equilibrium position creates a force that 

drives the system away from the equilibrium point. This situation is 

illustrated in Figure 7b: If the red dot is moved even slightly away 

from its equilibrium position at x0 in either the positive or the 

negative direction and released, it will move away from the 

equilibrium position.  

Case 3 Neutral Equilibrium (Figure 7c) 

This situation is illustrated in Figure 7c: If the red dot is displaced by a 

small amount, it will neither return to nor move away from its original 

equilibrium position. Instead, it will simply stay in the new position, 

which is also an equilibrium position.  

 

12. Problems: 

1. To stretch a relaxed biceps muscle 2.5 cm requires a force of 25 N. 

Find the Young’s modulus for the muscle tissue, assuming it to be a uniform cylinder of length 0.24 m 
and cross-sectional area 47 cm2.  
 
When a force of 25 N is applied to a relaxed bicep muscle, it stretches by 2.5 cm. Solve Equation 9.5 (or 
9.4) for Young’s modulus of the bicep:  
 
𝐹

𝐴
= ∆𝑃 = 𝐸 

∆𝐿

𝐿
 

 

E = 5.1 x 104 N/m2.  
 
Insight: Young’s Modulus for the bicep is five orders of magnitude smaller than the moduli given in 
Table 9.1. The force required to stretch a steel rod by the same distance as the bicep would be about a 
million times stronger than the force on the bicep. What force would you need (as orthopedic surgeon 
to stretch a human bone by the same distance as the bicep?  
 

 

Figure 7  
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2. The deepest place in all the oceans is the Marianas Trench, where the depth is 10.9 km and the 

pressure is 1.10 x 108 N/m2. If a steel ball 15.0 cm in diameter is taken to the bottom of the trench, by 
how much does its volume decrease? Take the pressure at the sea level 1.10 x 105 N/m2.  
 
A steel sphere is submerged to the bottom of the trench. The increased pressure 
compresses the ball. Solve Equation 9.7 for the change in volume: 
 
𝐹

𝐴
= ∆𝑃 =  −𝐵 [

∆𝑉

𝑉
]        ---------->    ∆𝑉 = −

1

𝐵
∆𝑃 𝑉 

 

∆𝑉 = − 1.4 x 10-6 m3 
 
Insight: The volume decreases by 0.08%, which is not a noticeable change. At the bottom of the trench, 
the diameter of the ball is 14.996 cm, a change of 4/100 of a millimeter.  
 

3. A lead brick with the dimensions shown in the figure rests on a rough solid surface. A force of 2400 N 

is applied as indicated. Knowing the compression and shear moduli for lead are 16 x 109 N/m2 and 5.4 x 
109 N/m2 respectively, find (a) the change in height of the brick and (b) the amount of shear 
deformation.                                   
 

 

A force diagonally applied to the top of a lead brick creates both a compressive and a shear deformation 
of the brick. Use Equation 9.5 to calculate the compression and Equation 9.6 to calculate the shear 
deformation. The compression force is the vertical component of the applied force and the shear force 
is the horizontal component. Notice that the length of the brick is 6.0 cm, the width is 5.0 cm, and the 
thickness (height) is 2.0 cm. 
 

∆𝐿 =
1

𝐸

𝐹 𝑠𝑖𝑛𝜃

𝐴
 𝐿 = 

(2400 𝑁) (sin 25°) (0.02𝑚) 

(16 × 109 𝑁/𝑚2) (0.06𝑚) (0.05𝑚)
= 4.2 × 10−7m 

∆𝑥 =
1

𝐺

𝐹 𝑐𝑜𝑠𝜃

𝐴
 𝐿0= 

(2400 𝑁) (cos 25°) (0.02𝑚) 

(5.4 × 109 𝑁/𝑚2) (0.06𝑚) (0.05𝑚)
= 2.7 × 10−6m 

Insight: The small shear modulus (compared to the Young’s modulus) of lead results in a larger shear 
deformation than compressive deformation. 

 


