
Sections 10.11 & 10.12: Poiseuille’s equation 

1. So far we have considered only “ideal” fluids. In particular, we’ve assumed that fluids flow 

without frictional losses and that the molecules in a fluid have no interaction with one another. 

In this section, we consider the consequences that follow from relaxing these assumptions.  

2. When a block slides across a rough floor, it experiences a frictional force opposing the 

motion. Similarly, a fluid flowing past a stationary surface experiences a force opposing the 

flow. This tendency to resist flow is referred to as the viscosity of a fluid. Fluids like air have low 

viscosities, thicker fluids like water and blood are more viscous, and fluids like honey and motor 

oil are characterized by high viscosity. Viscosity in a fluid is similar to friction between two solid 

surfaces. 

3. To be specific, consider a situation of great 

practical importance—the flow of a fluid through a 

tube. Examples of this type of system include water 

flowing through a metal pipe in a house and blood 

flowing through an artery or a vein. If the fluid were 

ideal, with zero viscosity, it would flow through the 

tube with a speed that is the same throughout the 

fluid, as indicated in Figure (a). Real fluids with finite 

viscosity are found to have flow patterns like the 

one shown in Figure (b). In this case, the fluid is at 

rest next to the walls of the tube and flows with its 

greatest speed in the center of the tube. Because 

adjacent portions of the fluid flow past one another 

with different speeds, a force must be exerted on 

the fluid to maintain the flow, just as a force is 

required to keep a block sliding across a rough 

surface. 

4. The force causing a viscous fluid to flow is 

provided by the pressure difference, P1 - P2, across a 

given length, L, of tube (Figure b). Experiments show 

that the required pressure difference is proportional to the length of the tube and to the 

average speed, v, of the fluid. In addition, it is inversely proportional to the cross-sectional area, 

A, of the tube. Combining these observations, we can write the pressure difference in the 

following form: 

  

 

 

𝑃1 − 𝑃2  ∝  
𝑣𝐿

𝐴
   (Eq 1)   



The constant of proportionality between the pressure difference and vL/A is ‘related’ to the 

coefficient of viscosity, η, of a fluid. In fact, the proportionality constant is determined in such a 

way that the pressure difference is given by the following expression:     

                           

 

 

From this equation we can see that the dimensions of the coefficient of viscosity are N . s/m2. 

The SI unit for η is Pa . s (Pascal . second). A common non SI unit in the study of viscous fluids is 

the poise (P), named for the French physiologist Jean Leonard Marie Poiseuille (1797–1869) and 

defined as 1 poise = 1 P = 0.1 Pa . s. For example, the viscosity of water at room temperature 

(20°C) is 1.0 x 10-3 Pa . s and the viscosity of blood at 37 °C is 4 x 10-3 Pa . s. Some additional 

viscosities are given in Table 10-3. 

5. A convenient way to characterize the flow of a fluid is in terms of its volume flow rate. 

Referring to Section 10-8 (Equation 10-4b), we see that the volume flow rate of a fluid is simply 

vA, where v is the average speed of the fluid and A is the cross-sectional area of the tube 

through which it flows. Solving (Eq 2) for the average speed gives v = (P1 - P2) A/ (8πηL). 

Multiplying this result by the cross-sectional area of the tube yields the volume flow rate:  

 

 

 

Using the fact that the cross-sectional area of a cylindrical tube is A = π r2, where r is its radius, 

we obtain the result known as Poiseuille’s equation: 

 

Poiseuille’s equation tells us that the flow rate is directly proportional to the pressure and it is 

inversely proportional to the viscosity of the fluid and the length of the tube. This is just what 

we might expect. Most significantly, though, that Q also depends on the fourth power of the 

tube’s radius; thus a small change in radius corresponds to a large change in volume flow rate. 

To see the significance of the r4 dependence, consider an artery that branches into an arteriole 

with half the artery’s radius (see Example 10-12). Letting r go to r/2 in Poiseuille’s equation, and 

solving for the pressure difference, we find  

𝑃1 − 𝑃2 =  8𝜋𝜂
𝑣𝐿

𝐴
   (Eq 2)   
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Thus, the pressure difference across a given length of arteriole is 16 times what it is across the 

same length of artery.                     

Similarly, a narrowing, or stenosis, of an artery (see Figure 10-32) or a cholesterol buildup can 

produce significant increases in blood pressure. For example, a reduction in radius of only 20%, 

from r to 0.8r, causes an increase in pressure by a factor of (1/0.8)4 ~ 2.4. Thus, even a small 

narrowing of an artery can lead to an increased risk for heart disease and stroke.  

6. EXAMPLE: BLOOD SPEED IN THE PULMONARY ARTERY  

(a) The pulmonary artery, which connects the heart to the lungs, is 8.9 cm long and has a pressure 

difference over this length of 450 Pa (as shown in the figure below). If the inside radius of the artery is 

2.3 mm, what is the average speed of blood in the pulmonary artery? 1.2 m/s.                       

[Take the viscosity of the blood 2.72 x 10-3 Pa . s].                                                 

(b) Find the volume of blood that flows per second through the pulmonary artery. 20 cm3.                 

(c) If the radius of the artery is reduced by 18%, by what factor is the blood flow rate reduced? Assume 

that all other properties of the artery remain unchanged.               

The flow rate is reduced by a factor of 1/0.45 = 2.2. 
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(Eq 5) 

 


