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Dr. Mohammad Hussein         PHY 105 - Fall 2022     Lecture: 16        Date: 1/1/2023 

Chapter 23: Geometric optics 

Section 23.1: Introduction 

The Ray Mode: light travels in straight-line paths called light rays, see Figure 23.1.            

We will use this model to describe some phenomena of light such as reflection (section 23.2), refraction 

(sections 23.4 & 23.5), total internal reflection (section 23.6), and the formation of images by lenses 

(sections 23.7 & 23.8). Because these explanations involve straight-line rays at various angles, this 

subject is referred to as geometric optics. 

Section 23.2: Reflection  

The figure shows a beam of light strikes a flat surface. 

We define the angle of incidence, θi, to be the angle 

an incident ray (or wave) makes with the normal 

(perpendicular) to the surface, and the angle of 

reflection, θr, to be the angle the reflected ray makes 

with the normal. The relationship between these two 

angles is very simple−they are equal:                               

Law of reflection:  θr = θi                                           

Notice, in addition, that the incident ray, the normal, 

and the reflected ray all lie in the same plane, as is also 

clear from the figure.   

Section 23.4: Refraction   

When a wave propagates from a medium in which its speed is v1 to another medium in which it has a 

different speed, v2 ≠ v1, it will, in general, change its direction of motion. This phenomenon is called 

refraction.  

In general, the speed of light depends on the medium through which it travels. For example, we know 

that in a vacuum the speed of light is c = 3.00 x 108 m/s. When light propagates through water, 

however, its speed is reduced by a factor of 1.33. In general, the speed of light in a given medium, v, is 

determined by the medium’s index of refraction, n, defined as follows:  𝑣 =  
𝑐

𝑛
 .                  

Values of the index of refraction for a variety of media are given in Table 23-1.           

Quiz: The index of refraction is never less than 1: [True or False]. Answer: True.            

Quiz: How much time does it take for light to travel 1.20 m in water? Answer: 5.32 x 10-9 s.  

Section 23.5: Snell’s Law 

Returning to the direction of propagation, let’s suppose light has the speed v1 = c/n1 in one medium and 

the speed v2 = c/n2 in a second medium. The direction of propagation in these two media is related 

through a relationship, known as Snell’s law:  𝑛1  sin 𝜃1 =  𝑛2  sin 𝜃2  , where 𝜃1 is the angle of 

incidence and 𝜃2 is the angle of refraction. A typical application of Snell’s law is given in the following 

example. 
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EXAMPLE 1  

A beam of light in air enters (a) water (n = 1.33) or (b) diamond (n = 2.42) at an angle of 60.0° relative to 

the normal. Find the angle of refraction for each case. 

Because the beam starts in air, we refer to Table 23-1 and set n1 = 1.000293, or simply n1 = = 1.00 to 

three significant figures. We also solve Snell’s law for 𝜃2 , giving 𝜃2 =  sin−1 (
𝑛1

𝑛2
 sin 𝜃1).             

(a) With n2 = 1.33 we find 𝜃2 = 40.6°.                    

(b) With n2 = 2.42 we find 𝜃2 = 21.0°.             

Notice that the angle of reflection in both cases is 60° as required by the law of reflection.  

Insight: From the preceding example we can see that the greater the difference in the index of 

refraction between two different materials, the greater the difference in the direction of propagation. In 

addition, light is bent closer to the normal in the medium where its speed is reduced (the beam enters a 

medium where the speed of light is less and the index of refraction is greater). Of course, the opposite is 

true when light passes into a medium in which its speed is greater, as can be seen by reversing the 

incident and refracted rays. The qualitative features of refraction are as follows: 

• When a ray of light enters a medium where the index of refraction is increased, and hence the speed 

of the light is decreased, the ray is bent toward the normal.                       

• When a ray of light enters a medium where the index of refraction is decreased, and hence the speed 

of the light is increased, the ray is bent away from the normal.                   

• The greater the change in the index of refraction, the greater the change in the propagation direction. 

If there is no change in the index of refraction, there is no change in the direction of propagation.            

• If a ray of light goes from one medium into another along the normal, it is 

undeflected, regardless of the index of refraction of each medium. This follows 

directly from Snell’s law: If 𝜃1 is zero, then 0 = 𝑛2  sin 𝜃2 , which means that 𝜃2 = 0.  

Refraction is explored further in Example 23.8.  

Refraction is responsible for a number of common “optical illusions.” For example, 

we all know that a pencil placed in a glass of water appears to be bent, though it is 

still perfectly straight. The cause of this illusion is shown in the figure, where we 

see that rays leaving the water bend away from the normal and make the pencil 

appear to be above its actual position (see also Figure 23.23). This is an example of 

what is known as apparent depth, in which an object appears to be closer to the water’s surface than it 
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really is (see Example 23.9). Similarly, refraction can cause a mirage, as when hot, dry ground in the 

distance appears to be covered with water.    

We will use the results of refraction in sections 23.7 & 23.8 when we investigate the behavior of lenses. 

For now, we turn to another phenomenon associated with refraction, namely the total internal 

reflection.  

Section 23.6: Total Internal Reflection                  

Sometimes refraction can “trap” a ray of light and prevent it from leaving a material. 

For example, Figure (a) shows 

a ray of light in water 

encountering a water–air 

interface. In such a case, it is 

observed that part of the light 

is reflected back into the 

water at the interface, while 

the rest emerges into the air 

along a direction that is bent 

away from the normal 

according to Snell’s law 

(opposite to the case of 

Example 1). If the angle of 

incidence is increased, as in 

Figure (b), the angle of 

refraction increases as well. At 

some critical angle of 

incidence, 𝜃𝑐 , the refracted 

beam no longer enters the air 

but instead is directed parallel 

to the water–air interface 

[Figure (c)]. In this case, the 

angle of refraction is 90°. For 

angles of incidence greater 

than the critical angle, as in 

Figure (d), it is observed that 

all of the light is reflected back 

into the water—it’s effectively 

trapped in the water.          

This phenomenon is referred to as total internal reflection (see Figure 23.26). We can find the critical 

angle for total internal reflection by setting 𝜃2 = 90° and applying Snell’s law: 𝑛1 sin 𝜃𝑐 = 𝑛2 sin 90° = 𝑛2 . 

Therefore, the critical angle is given by the following relationship: sin 𝜃𝑐 =  
𝑛2

𝑛1
  . Because sin 𝜃 is 

always less than or equal to 1, the index of refraction, n1, must be larger than the index of refraction, n2, 

if the above equation is to give a physical solution. Thus, total internal reflection can occur only when 

light in one medium encounters an interface with another medium in which the speed of light is greater. 
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For example, light moving from water to air can undergo total internal reflection, as was explained in 

the Figure above, but light moving from air to water cannot.  

EXAMPLE 2  

Consider a sample of glass whose index of refraction is n = 1.65. Find the critical angle for total internal 

reflection for light traveling from this glass to (a) air (n = 1.00) and (b) water (n = 1.33). 

It is straightforward to obtain 𝜃𝑐 by simply substituting the appropriate indices of refraction for each 

case in the relationship 𝜃𝑐 =  sin−1 (
𝑛2

𝑛1
). Answers: (a): 𝜃𝑐 = 37.3° . (b): 𝜃𝑐 = 53.7° 

Insight: In the case of water and glass, the two indices of refraction are close in value; hence, light 

escapes from glass to water over a wider range of incident angles (0° to 53.7°) than from glass to air (0° 

to 37.3°). In general, a large change in the index of refraction, such as from diamond to air, means that 

very little light escapes (the majority internally reflects), which is why diamonds sparkle more than 

glass.                                   

Practice Problem: Suppose the incident ray is in a different type of glass, with a glass–air critical angle of 

40.0°. Is the index of refraction of this glass greater than or less than 1.65? [Answer: The critical angle is 

larger for this glass, which means that its index of refraction must be less than 1.65. Thus n = 1.56.]  

Total internal reflection is frequently put to practical use. For example, many binoculars contain a set of 

prisms—referred to as Porro prisms—that use total internal reflection to “fold” a relatively long light 

path into the short length of the binoculars, as shown in Figure 23.28. Optical fibers are another 

important and common application of total internal reflection. These thin fibers are generally composed 

of a glass or plastic core with a high index of refraction surrounded by an outer coating, or cladding, with 

a low index of refraction. Light is introduced into the core of the fiber at one end. It then propagates 

along the fiber in a zigzag path, undergoing one total internal reflection after another, as indicated in 

Figure 23.29. The core is so transparent that even after light propagates through a 1-km length of fiber, 

the amount of absorption is roughly the same as if the light had simply passed through a glass window. 

In addition, the total internal reflections allow the fiber to go around corners, and even to be tied into 

knots, and still deliver the light to the other end.  

The ability of optical fibers to convey light along curved paths has been put to good use in various fields 

of medicine. In particular, devices known as endoscopes allow physician (a JU PHY-105 former student!) 

to examine the interior of the body by snaking a flexible tube containing optical fibers into the part of 

the body to be examined. For example, a type of endoscope called the bronchoscope (Figure 23.30) can 

be inserted into the nose or throat, threaded through the bronchial tubes, and eventually placed in the 

lungs. There, the bronchoscope delivers light through one set of fibers and returns an image to the 

physician through another set of fibers. In some cases, the bronchoscope can even be used to retrieve 
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small samples from the lung for further analysis. Similarly, the colonoscope can be used to examine the 

colon, making it one of the most important weapons in the fight against colon cancer. 

Section 23.7: Ray Tracing for Lenses 

As we’ve seen, a ray of light can be redirected as it passes from one medium 

to another. A device that takes advantage of this effect, and uses it to focus 

light and form images, is a lens. Typically, a lens is a thin piece of glass or 

other transparent substance that can be characterized by the effect it has on 

light. In particular, converging lenses take parallel rays of light and bring 

them together at a focus; diverging lenses cause parallel rays to spread out as 

if diverging from a point source. Examples are shown in the figure next: the 

paths of light rays through a convex (converging) lens (top) and a concave 

(diverging) lens (bottom). A variety of converging and diverging lenses are 

illustrated in Figure 23.31 (a, b), though we consider only the most basic 

types here—namely, the double concave (or simply concave) and the double 

convex (or simply convex). Notice, in general, that converging lenses are 

thicker in the middle, and diverging lenses are thinner in the middle.  

Let’s start by considering a convex lens, as shown in Figure 23.33. Convex 

lenses are shaped so that they bring parallel light to a focus at a focal point, F, along the center line, or 

axis, of the lens, as indicated in the figure. In the case of concave lenses (Figure 23.36), parallel rays are 

bent away from the axis of the lens. When the diverging rays from a concave lens are extended back, 

they appear to originate at a focal point F on the axis of the lens.  

Ray Tracing: To determine the type of image formed by a convex or concave lens, we can use ray 

tracing. The three principal rays for lenses are shown below in Figure 1 and Figure 2. Their properties 

are as follows: 

 

 

 

 

 

 

• The P ray—or parallel ray—approaches the lens parallel to its axis. The P ray is bent so that it passes 

through the focal point of a convex lens (Figure 1), or extrapolates back to the focal point on the same 

side of a concave lens (Figure 2).                     

• The F ray (focal-point ray) on a convex lens is drawn through the focal point and on to the lens, as 

pictured in Figure 1. The lens bends the ray parallel to the axis— basically the reverse of a P ray. For a 

concave lens, the F ray is drawn toward the focal point on the other side of the lens, as in Figure 2. 

Before it gets there, however, it passes through the lens and is bent parallel to the axis.                              

• The midpoint ray (M ray) goes through the middle of the lens, which is basically like a thin slab of glass 

 

 
 

Figure 1 Figure 2 
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(recall Example 23.8). For ideal lenses, which are infinitely thin, the M ray continues in its original 

direction with negligible displacement after passing through the lens. 

To illustrate the use of ray tracing, we start 

with the concave lens shown in Figure 3 

(Figure 23.39). Notice that the three rays 

originating from the top of the object extend 

backward to a single point on the left side of 

the lens—to an observer on the right side of 

the lens this point is the top of the image. Our 

ray diagram also shows that the image is 

upright and reduced in size. In addition, the 

image is virtual, because it is on the same 

side of the lens as the object. These are 

general features of the image formed by a concave lens.   

The behavior of a convex lens is more interesting in that the type of image it forms depends on the 

location of the object. For example, if the object is placed beyond the focal point, as in Figure 4 (a) 

(Figure 23.37), the image is inverted, on the opposite side of the lens, and light passes through it—it is a 

real image (it might be reduced or enlarged in size - see Example 3). If the object is placed between the 

lens and the focal point, as in Figure 4 (b), the result is an image that is virtual (on the same side as the 

object), upright, and enlarged in size.  

Section 23.8: The Thin-Lens Equation 

We now derive an equation that relates the image distance to the 

object distance and the focal length of a thin lens. This thin-lens 

equation will make the determination of image position quicker and 

more accurate than doing ray tracing. This equation can be derived by 

referring to Figure 5 (Figure 23.40), which shows the image produced 

by a convex lens, along with the P and M rays that locate the image.  

First, notice that the P ray creates two similar blue-shaded triangles on 

the right side of the lens in Figure 5 (a). Because the triangles are 

similar, it follows that  

ℎo

𝑓
=  

−ℎ𝑖

𝑑𝑖−𝑓
  

 

Figure 3 

 

Figure 4 (a) Figure 4 (b) 

 

Figure 5 (a) 
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In this expression, 𝑓 is the focal length—that is, the distance from the 

lens to the focal point, F—and we use −ℎ𝑖  on the right side of the 

equation, because ℎ𝑖  is negative for an inverted image. Next, the M 

ray forms another pair of similar triangles, shown with pink shading in 

Figure 5 (b), from which we obtain the following: 

ℎo

𝑑o
=  

−ℎ𝑖

𝑑𝑖
  --- [#] 

Combining these two relationships, we obtain a result known as the 

thin-lens equation: 

1

𝑑o

+ 
1

𝑑i

=  
1

𝑓
 

Finally, the magnification, m, of the image is defined as the ratio of the image height to object height: 

𝑚 =  
ℎi

ℎo

 

Rearranging the Equation ---[#] given above, we find that ℎ𝑖 = 
−𝑑𝑖

𝑑𝑜
 ℎo. Therefore, the magnification for 

a lens is:  

𝑚 =  
ℎi

ℎo
 = 

−𝑑𝑖

𝑑𝑜
 

As before, the sign of the magnification indicates the orientation of the image, and the magnitude gives 

the amount by which its size is enlarged or reduced compared with the object. The thin-lens equation 

(though was derived for converging lens) will be valid for both converging and diverging lenses, and for 

all situations, if we use the following sign conventions: 

Focal Length 

𝑓 is positive for converging (convex) lenses. 𝑓 is negative for diverging (concave) lenses.  

Magnification  

m is positive for upright images (same orientation as object).                                                                             

m is negative for inverted images (opposite orientation of object). 

Image Distance  

𝑑𝑖  is positive for real images (images on the opposite side of the lens from the object).                              

𝑑𝑖  is negative for virtual images (images on the same side of the lens as the object).  

Object Distance  

𝑑𝑜 is positive for real objects (from which light diverges).                                                        

𝑑𝑜 is negative for virtual objects (toward which light converges). 

 

Figure 5 (b) 
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We now apply the thin-lens equation and the definition of magnification to typical lens system.  

EXAMPLE 3 

A lens produces a real image that is twice as large as the object, inverted, and located 15 cm from the 

lens. Find (a) the object distance and (b) the focal length of the lens. 

Answer: Because the image is real, the lens must be convex, and the object must be outside the focal 

point, as we indicate in our sketch. [Compare with Figure 4 (a).] In addition, the image is inverted 

(negative magnification), which means the magnification is m = –2. Finally, the distance to the real 

image is given as 𝑑𝑖= 15 cm. To find both 𝑑𝑜 and ƒ requires two independent relationships. One is 

provided by the magnification, the other by the thin-lens equation. Thus: 𝑑𝑜 = 7.5 cm and ƒ = 5.0 cm.  

Insight: As expected for a convex lens, the focal length is positive. In addition, notice that the object 

distance is greater than the focal length, in agreement with Figure 4 (a). Finally, the magnification 

produced by this lens is not always -2. In fact, it depends on the precise location of the object, as we see 

in the following Practice Problem.  

Practice Problem: Suppose we would like to have a magnification of -3 using this same lens. (a) Should 

the object be moved closer to the lens or farther from it? Explain. (b) Find the object and image 

distances for this case. [Answer: (a) The object should be moved closer to the lens. This moves the 

image farther from the lens and makes it larger. (b) We find 𝑑𝑜 = 6.67 cm (which is less than 7.5 cm, as 

expected) and 𝑑𝑖  = 3𝑑𝑜 = 20.0 cm.] 

Digression: Ophthalmologists and optometrists, instead of using the focal length, use the reciprocal of 

the focal length to specify the strength of eyeglass (or contact) lenses. This is called the power, P, of a 

lens:   

𝑃 =  
1

𝑓
 

The unit for lens power is the diopter (D), which is an inverse meter: 1 D = 1 m–1. Therefore, the lens in 

this example (with 5-cm-focal-length) has a power P = 1/(0.05m) = 20.0 D. From the sign convention 

about the focal length mentioned above, it follows that the power of a converging lens, in diopters, is 

positive, whereas the power of a diverging lens is negative. A converging lens is sometimes referred to 

as a positive lens, and a diverging lens as a negative lens. We will mainly use the focal length—the 

power of a lens is usually used when discussing eyeglass lenses (chapter 25). That being said, I highly 

recommend you read section 25.2.  

EXAMPLE 4 

An object is placed 12 cm in front of a diverging lens with a focal length of -7.9 cm. Find (a) the image 

distance and (b) the magnification.  

Answer: Given the focal length and object distance, we can use the thin-lens equation to find the image 

distance. Once the image and object distances are known, we can use them to find the magnification. 

Thus: 𝑑𝑖  = -4.8 cm and m = 0.40.   
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Insight: Because the image distance is negative, it follows that the image is virtual and on the same side 

of the lens as the object, as expected for a concave (diverging) lens. In addition, the fact that the 

magnification is positive means that the image is upright. These numerical values correspond to the 

system illustrated in Figure 3.                         

Practice Problem: An object at the distance 𝑑𝑜 = 15 cm from a lens produces an inverted image. Is the 

focal length of the lens greater than, less than, or equal to 15 cm? Answer: Only a convex lens produces 

an inverted image, and this occurs when the object is farther from the lens than the focal point. 

Therefore, the focal length of the lens is less than 15 cm.                

The thin-lens equation is explored further in Examples 23.12, 23.13, and 23.14. 

Problems:  

1. A PHY_105 student walks to the end of a 

dock and shines his laser pointer into the 

water. When he shines the beam of light on 

the water a horizontal distance of 2.4 m 

from the dock, he sees a glint of light from a 

shiny object on the sandy bottom. If the 

pointer is 1.8 m above the surface of the 

water, and the water is 5.5 m deep, what is 

the horizontal distance x as indicated in the 

figure?  

Answer: All of the known distances are 

indicated in the sketch, along with the angle 

of incidence, 𝜃1, and the angle of refraction, 𝜃2. Finally, the appropriate indices of refraction from Table 

23-1 are given as well. We can use Snell’s law and basic trigonometry to find the horizontal distance x. 

First, the information given in the problem determines the angle of incidence, 𝜃1. In particular, we can 

see from the sketch that tan 𝜃1 = (2.4 m)/(1.8 m). Second, Snell’s law gives the angle of refraction, 𝜃2. 

Finally, we can find the distance x from 𝜃2, noting that tan 𝜃2 = x/(5.5 m).                                                

Thus: 𝜃1 = 53°, 𝜃2 = 37°, and hence x = 4.1 m.  

2. An object with a height of 2.54 cm is placed 36.3 mm to the left of a lens with a focal length of 35.0 

mm. (a) Where is the image located? (b) What is the height of the image?                                           

Answer: (a) The image is located 0.98 m to the right of the lens. (b) The image is inverted and 68 cm tall.  

3. An object is located to the left of a concave lens whose focal length is -34 cm. The magnification 

produced by the lens is m = 1/3. (a) To decrease the magnification to m = 1/4, should the object be 

moved closer to the lens or farther away? (b) Calculate the distance through which the object should be 

moved. Answer: (a) You need to write an equation for the magnification as a function of the object 

distance: 𝑚= 
𝑓

𝑓− 𝑑𝑜
. You can see from the expression that because f is negative, in order to decrease the 

magnification, the object should be moved farther away from the lens, making the denominator 𝑓 −  𝑑𝑜 

larger in magnitude and m smaller. (b) Solve for the object distance:  𝑑𝑜4− 𝑑𝑜3 = 𝑓(
1

𝑚3
−

1

𝑚4
) = 34 cm.   

The object should be moved 34 cm farther away from the lens.  
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4. A film of oil, with an index of refraction of 1.48 and a thickness of 1.50 

cm, floats on a pool of water, as shown. A beam of light is incident from 

air on the oil at an angle θ1= 60.0° to the vertical. (a) Find the angle θ the 

light beam makes with the vertical as it travels through the water. (b) 

How does your answer to part (a) depend on the thickness of the oil film? 

Explain.                     

Answer: (a) Because the air/oil and oil/water interfaces are parallel, the 

angle of refraction at the air/oil interface will equal the angle of 

incidence at the oil/water interface. Write Snell’s law at the air/oil 

interface and at the oil/water interface, and then combine the two 

equations and solve for the angle of refraction in water:    

𝜃 = sin−1 (
𝑛𝑎𝑖𝑟

𝑛𝑤𝑎𝑡𝑒𝑟
 sin 𝜃1) =  sin−1 (

𝑛1

𝑛2
 sin 𝜃1) = 40.6°                  

(b) The answer to part (a) does not depend upon the thickness of the oil film, because θ depends only 

upon the original angle of incidence and the indices of refraction of air and water. 

5. As shown in the figure, a real inverted image I of an 

object O is formed by a particular lens (not shown); the 

object–image separation is d = 40.0 cm, measured along 

the central axis of the lens. The image is just half the size 

of the object. (a) What kind of lens must be used to 

produce this image? (b) How far from the object must the 

lens be placed? (c) What is the focal length of the lens?         

Answer: This time I’ll give you the answer for item c only: 

8.89 cm.  

 

 

 

 


