NOTE: For problems involving gravitational force, use $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$ unless otherwise specified.
Q1) A car travels 40 kilometers at an average speed of $80 \mathrm{~km} / \mathrm{h}$ and then travels 40 kilometers at an average speed of $40 \mathrm{~km} / \mathrm{h}$. The average speed (in km / h) of the car for this 80 km trip is:
A) 40
B) 45
C) 53
D) 60
E) 80

Q2) The vectors \vec{a}, \vec{b}, and \vec{c} are related by $\vec{c}=\vec{a}-\vec{b}$. Which diagram below illustrates this relationship?

I

II

III

IV
A) I.
B) II.
C) III.
D) IV.
E) None of these

Q3) In the diagram, \vec{A} has magnitude 12 m and \vec{B} has magnitude 8 m . The x component (in m) of $\vec{A}+\vec{B}$ is:
A) 1.5
B) 4.5
C) 12.5
D) 15
E) 20

Q4) Two blocks weighing 250 N and 350 N respectively, are connected by a string that passes over a massless pulley as shown. The tension (in N) in the string is:
A) 210
B) 290
C) 410
D) 500
E) 4900

Q5) A 32-N force, parallel to the incline, is required to push a certain block at constant velocity up a frictionless incline that is 30° above the horizontal. The mass (in kg) of the block is:
A) 3.3
B) 3.8
C) 5.7
D) 6.5
E) 160

Q6) A 12-kg block rests on a horizontal surface and a boy pulls on it with a force that is 30° below the horizontal. If the coefficient of static friction is 0.40 , the minimum magnitude force (in N) he needs to start the block moving is:
A) 44
B) 47
C) 54
D) 56
E) 71

Q7) A $5.0-\mathrm{kg}$ block is resting on a horizontal plank. The coefficient of static friction is 0.50 and the coefficient of kinetic friction is 0.40 . After one end of the plank is raised so the plank makes an angle of 25° with the horizontal, the force of friction (in N) is:
A) 0
B) 17.8
C) 20.7
D) 22.2
E) 44

Q8) A $5.0-\mathrm{kg}$ block is resting on a horizontal plank. The coefficient of static friction is 0.50 and the coefficient of kinetic friction is 0.40 . After one end of the plank is raised so the plank makes an angle of 30° with the horizontal, the force of friction (in N) is:
A) 0
B) 17
C) 20
D) 25
E) 49

Q9) A $5.0-\mathrm{kg}$ block is on an incline that makes an angle 30° with the horizontal. If the coefficient of static friction is 0.50 , the minimum force (in N) that can be applied parallel to the plane to hold the block at rest is:
A) 0
B) 3.4
C) 21.1
D) 24.5
E) 46

Q10) A $5.0-\mathrm{kg}$ block is on an incline that makes an angle 30° with the horizontal. If the coefficient of static friction is 0.5 , the maximum force (in N) that can be applied parallel to the plane without moving the block is:
A) 0
B) 3.4
C) 21.1
D) 45.6
E) 55

Q11) Block A, with mass m_{A}, is initially at rest on a horizontal floor. Block B , with mass m_{B}, is initially at rest on the horizontal top surface of A . The coefficient of static friction between the two blocks is μ_{s}. Block A is pulled with a horizontal force. It begins to slide out from under B if the force is greater than:
A) $m_{A} g$
B) $m_{B} g$
C) $\mu_{s} m_{A} g$
D) $\mu_{s} m_{B} g$
E) $\mu_{s}\left(m_{A}+m_{B}\right) g$

Q12) A $1000-\mathrm{kg}$ airplane moves in straight flight at constant speed. The force of air friction is 1800 N . The net force (in N) on the plane is:
A) 0
B) 11600
C) 1800
D) 9800
E) none of these

Q13) The system shown remains at rest. The force (in N) of friction on the block on the slope is:
A) 4
B) 8
C) 12
D) 16
E) 20

Q14) A $4.00-\mathrm{kg}$ block rests between the floor and a $3.00-\mathrm{kg}$ block as shown in the figure. The $3.00-\mathrm{kg}$ block is tied to a wall by a horizontal rope. If the coefficient of static friction is 0.800 between each pair of surfaces in contact, what horizontal force F (in N) must be applied to the $4.00-\mathrm{kg}$ block to make it move?
A) 16.2
B) 54.9
C) 21.1
D) 23.5
E) 78.4

Q15) A rope pulls on the lower block in the figure with a tension
 force of 20 N . The coefficient of kinetic friction between the lower block and the surface is 0.16 . The coefficient of kinetic friction between the lower block and the upper block is also 0.16 . The pulley has no appreciable mass or friction. What is the acceleration (in m/s ${ }^{2}$) of the 2.0 kg block?
A) 4.1
B) 5.1
C) 8.4
D) 9.2
E) 0.7

Q16) A system comprised blocks, a light frictionless pulley, and connecting ropes is shown in the figure. The $9.0-\mathrm{kg}$ block is on a perfectly smooth horizontal table. The surfaces of the $12-\mathrm{kg}$ block are rough, with $\mu_{\mathrm{k}}=0.30$ between the two blocks. If the $5.0-\mathrm{kg}$ block accelerates downward when it is released, then its acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) is

A) 1.0
B) 1.2
C) 1.4
D) 1.6
E) 1.8

Q17) Consider the system of problem 16 with the following statement: The $9.0-\mathrm{kg}$ block is on a perfectly smooth horizontal table. The surfaces of the $12-\mathrm{kg}$ block are rough, with $\mu_{\mathrm{k}}=0.30$ between the two blocks. The mass of the hanging block, M , is unknown. If the hanging block is moving downward with a constant velocity of $1 \mathrm{~m} / \mathrm{s}$, what is its mass M? Answer: $[\mu \mathrm{k} * 12-\mathrm{kg}$]

Q18) Block A of mass 5.0 kg and block X are attached to a rope which passes over a pulley, as shown in the figure. An $80-\mathrm{N}$ force P is applied horizontally to block A, keeping it in contact with a rough vertical face. The coefficients of static and kinetic friction between the wall and block A are $\mu_{\mathrm{S}}=0.40$ and μ_{k} $=0.30$. The pulley is light and frictionless. The mass of block X is adjusted until block A moves upward with an acceleration of $1.6 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass (in kg) of block X ?
A) 9.9
B) 9.3
C) 8.7
D) 8.1
E) 7.5

Q19) Consider the figure of problem 18. Block A of mass 8.0 kg and block X are attached to a rope that passes over a pulley. A $50-\mathrm{N}$ force P is applied horizontally to block A, keeping it in contact with a rough vertical face. The coefficients of static and kinetic friction between the wall and block A are $\mu_{\mathrm{S}}=0.40$ and $\mu_{\mathrm{k}}=0.30$. The pulley is light and frictionless. In the figure, the mass of block X is adjusted until block A descends at constant velocity of $4.75 \mathrm{~cm} / \mathrm{s}$ when it is set into motion. What is the mass (in kg) of block X ?
A) 6.5
B) 7.2
C) 8.0
D) 8.8
E) 9.5

Q20) Three objects are connected as shown in the figure. The strings and frictionless pulleys have negligible masses, and the coefficient of kinetic friction between the $2.0-\mathrm{kg}$ block and the table is 0.25 . What is the acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of the $2.0-\mathrm{kg}$ block?
A) 2.5
B) 1.7
C) 3.2
D) 4.0
E) 8.2

Q21) A $4.00-\mathrm{kg}$ block rests on a 30.0° incline as shown in the figure. The coefficients of static friction and kinetic friction between the block and the incline are 0.700 and 0.500 respectively. The magnitude
 of the force $F($ in N$)$ that must act on the block to start it moving up
the incline is: A) 34.0
B) 51.1
C) 54.7
D) 84.0
E) 76.4

