1 A $100-\mathrm{kg}$ box rolls down a 20° incline. A man tries to keep it from accelerating, and manages to keep its acceleration to $1.2 \mathrm{~m} / \mathrm{s}^{2}$. If the box rolls 5 m , what is the net work done on it by all the forces acting on it?
A) 60 J
B) 100 J
C) 600 J
D) 1000 J
E) 4900 J

2 Two objects with masses, m_{1} and m_{2}, have the same kinetic energy and are both moving to the right. The same constant force \vec{F} is applied to the left to both masses if m_{1} $=4 m_{2}$, the ratio of the stopping distance of m_{1} to that of m_{2} is:
A) $1: 4$
B) $4: 1$
C) $1: 2$
D) $2: 1$
E) $1: 1$

3 The same force F is applied horizontally to bodies $1,2,3$ and 4 , of masses $m, 2 m, 3 m$ and $4 m$, initially at rest and on a frictionless surface, untii each body has traveled distance d. The correct listing of the magnitudes of the velocities of the bodies, v_{l}, v_{2}, v_{3}, and v_{4} is
a. $v_{4}=\sqrt{\frac{4}{3}} v_{3}=\sqrt{\frac{3}{2}} v_{2}=2 v_{1}$.
b. $v_{4}=v_{2}>v_{3}=v_{1}$.
c. $v_{1}=\sqrt{2} v_{2}=\sqrt{3} v_{3}=2 v_{4}$
d. $v_{1}=2 v_{2}=3 v_{3}=4 v_{4}$.
e. $v_{4}=\frac{3}{4} v_{3}=\frac{2}{3} v_{2}=\frac{1}{2} v_{1}$

4 A 1000.0 kg car is moving at $15 \mathrm{~km} / \mathrm{h}$. If a 2000.0 kg truck has 18 times the kinetic energy of the car, how fast is the truck moving?
A) $45 \mathrm{~km} / \mathrm{h}$
B) $63 \mathrm{~km} / \mathrm{h}$
C) $54 \mathrm{~km} / \mathrm{h}$
D) $36 \mathrm{~km} / \mathrm{h}$

5A $6.0-\mathrm{kg}$ block is released from rest 80 m above the ground. When it has fallen 60 m its kinetic energy is approximately:
A) 4700 J
B) 3500 J
C) 1200 J
D) 120 J
E) 60 J

6 For a block of mass m to slide without friction up the rise of height h shown, it must have a minimum initial kinetic energy of:

A) $g h$
B) $m g h$
C) $g h / 2$
D) $m g h / 2$
E) $2 m g h$

7 A $50-\mathrm{N}$ force is the only force acting on a $2-\mathrm{kg}$ crate that starts from rest. When the force has been acting for 2 s the rate at which it is doing work is.
A) 100 W
B) 1000 W
C) 2500 W
D) 5000 W
E) 63000 W

8 A $3.0-\mathrm{kg}$ block is on a frictionless horizontal surface. The block is at rest when, at $t=$ 0 , a force (magnitude $P=2.0 \mathrm{~N}$) acting at an angle of 22° above the horizontal is applied to the block. At what rate is the force P doing work at $t=2.0 \mathrm{~s}$?
a. 2.3 W
b. 2.0 W
c. 1.4 W
d. 1.7 W
e. 1.2 W

9 A car needs to generate 75.0 hp in order to maintain a constant velocity of $27.3 \mathrm{~m} / \mathrm{s}$ on a flat road. What is the magnitude of the total resistive force acting on the car (due to friction, air resistance, etc.)? ($1 \mathrm{hp}=746 \mathrm{~W}$)
A) $2.05 \times 10^{3} \mathrm{~N}$
B) 2.75 N
C) $1.03 \times 10^{3} \mathrm{~N}$
D) $2.87 \times 10^{3} \mathrm{~N}$

10 How long will it take a 7.08 hp motor to lift a 250 kg beam directly upward at constant velocity from the ground to a height of 45.0 m ? Assume frictional forces are negligible. ($1 \mathrm{hp}=746 \mathrm{~W}$)
A) 20.9 s
B) $1.56 \times 10^{4} \mathrm{~s}$
C) $2.18 \times 10^{4} \mathrm{~s}$
D) 39.7 s

11 A $3.0-\mathrm{kg}$ block is on a horizontal surface. The block is at rest when, at $t=0$, a force (magnitude $P=12 \mathrm{~N}$) acting parallel to the surface is applied to the block causing it to accelerate. The coefficient of kinetic friction between the block and the surface is 0.20. At what rate is the force P doing work on the block at $t=2.0 \mathrm{~s}$?
a. 54 W
b. 49 W
c. 44 W
d. 59 W
e. 24 W

12 A simple pendulum consists of a 2.0 kg mass attached to a string. It is released from rest at X as shown. Its speed at the lowest point Y is:

A) $1.9 \mathrm{~m} / \mathrm{s}$
B) $3.7 \mathrm{~m} / \mathrm{s}$
C) $4.4 \mathrm{~m} / \mathrm{s}$
D) $6.0 \mathrm{~m} / \mathrm{s}$
E) $36 \mathrm{~m} / \mathrm{s}$

13 A $0.60-\mathrm{kg}$ object is suspended from the ceiling at the end of a $2.0-\mathrm{m}$ string. When pulled to the side and released, it has a speed of $4.0 \mathrm{~m} / \mathrm{s}$ at the lowest point of its path. What maximum angle does the string make with the vertical as the object swings up?
a. 61°
b. 54°
c. 69°
d. 77°
e. 47°

14 A 2.0-kg mass swings at the end of a light string (length $=3.0 \mathrm{~m}$). Its speed at the lowest point on its circular path is $6.0 \mathrm{~m} / \mathrm{s}$. What is its kinetic energy at an instant when the string makes an angle of 50° with the vertical?
a. 21 J
b. 15 J
c. 28 J
d. 36 J
e. 23 J

15 A roller coaster of mass 80.0 kg is moving with a speed of $20.0 \mathrm{~m} / \mathrm{s}$ at position A as shown in the figure. The vertical height above ground level at position A is 200 m . Neglect friction.

(a) What is the total mechanical energy of the coller coaster at point B?

Answer: $1.73 \times 10^{5} \mathrm{~J}$
(b) What is the speed of the roller coaster at point C ?

Answer: $34.4 \mathrm{~m} / \mathrm{s}$

16 A $2.2-\mathrm{kg}$ block starts from rest on a rough inclined plane that makes an angle of 25° with the horizontal. The coefficient of kinetic friction is 0.25 . As the block goes 2.0 m down the plane, the mechanical energy of the whole system changes by:
A) 0 J
B) -9.8 J
C) 9.8 J
D) -18 J
E) 18 J

17
17 A crane lifts a 425 kg steel beam vertically a distance of 117 m . How much work does the crane do on the beam if the beam accelerates upward at $1.8 \mathrm{~m} / \mathrm{s}^{2}$? Neglect frictional forces.
A) $5.8 \times 10^{5} \mathrm{~J}$
B) $3.4 \times 10^{5} \mathrm{~J}$
C) $4.0 \times 10^{5} \mathrm{~J}$
D) $4.9 \times 10^{5} \mathrm{~J}$

18 A rod is pivoted about its center. A 5-N force is applied 4 m from the pivot and another $5-\mathrm{N}$ force is applied 2 m from the pivot, as shown. The magnitude of the total torque about the pivot is:

A) $0 \mathrm{~N} \cdot \mathrm{~m}$
B) $5.0 \mathrm{~N} \cdot \mathrm{~m}$
C) $8.7 \mathrm{~N} \cdot \mathrm{~m}$
D) $15 \mathrm{~N} \cdot \mathrm{~m}$
E) $26 \mathrm{~N} \cdot \mathrm{~m}$

19 A uniform rod AB is 1.2 m long and weighs 16 N . It is suspended by strings AC and $B D$ as shown. A block P weighing 96 N is attached at $\mathrm{E}, 0.30 \mathrm{~m}$ from A . The magnitude of the tension force in the string BD is:
A) 8.0 N
B) 24 N
C) 32 N
D) 48 N
E) 80 N

20 An $80-\mathrm{N}$ uniform rod leans against a frictionless wall as shown. The torque (about point P) applied to the rod by the wall is:

A) $40 \mathrm{~N} \cdot \mathrm{~m}$
B) $60 \mathrm{~N} \cdot \mathrm{~m}$
C) $120 \mathrm{~N} \cdot \mathrm{~m}$
D) $160 \mathrm{~N} \cdot \mathrm{~m}$
E) $240 \mathrm{~N} \cdot \mathrm{~m}$

21 In the figure, two boxes, each of mass 24 kg , are at rest and connected as shown. The coefficient of kinetic friction between the inclined surface and the box is 0.31 . Find the speed of the boxes just after they have moved 1.6 m . Answer: $1.91 \mathrm{~m} / \mathrm{s}$

22 In the figure, a block of mass m is moving along the horizontal frictionless surface with a speed of $5.70 \mathrm{~m} / \mathrm{s}$. If the slope is 11.0° and the coefficient of kinetic friction between the block and the incline is 0.260 , how far does the block travel up the incline?

Answer: 3.72 m
23 A $10.0-\mathrm{kg}$ uniform ladder that is 2.50 m long is placed against a smooth vertical wall and reaches to a height of 2.10 m , as shown in the figure. The base of the ladder rests on a rough horizontal floor whose coefficient of static friction with the ladder is 0.800 . An $80.0-\mathrm{kg}$ bucket of concrete is suspended from the top rung of the ladder, right next to the wall, as shown in the figure. Whatis the magnitude of the friction force that the floor exerts on the ladder?

A) 538 N
B) 706 N
C) 1290 N
D) 833 N
E) 601 N

