1 A particle starts from rest at time $t=0.00 \mathrm{~s}$ and moves in the $+x$
direction with constant acceleration. If the particle travels 6.0 m during the time $t=1.00 \mathrm{~s}$ to $\mathrm{t}=2.00 \mathrm{~s}$, find its acceleration (in $\mathrm{m} / \mathrm{s}^{2}$).
$+4.00 \quad-5.00-10.00 \quad+6.00+2.00$
2. A particle moving in the $+x$ direction with constant acceleration travels from $x=10 \mathrm{~m}$ to $x=50 \mathrm{~m}$ in 2 s . If the velocity of the particle at the end of this motion is $10 \mathrm{~m} / \mathrm{s}$, find its acceleration (in $\mathrm{m} / \mathrm{s}^{2}$). $-10.00+4.00-5.00+6.00+2.00$
? Two identical masses M 1 and $\mathrm{M} 2(\mathrm{M} 1=\mathrm{M} 2=\mathrm{M})$ are dropped from rest irom different heights to the ground (neglect air resistance). M1 takes time t to reach the ground, while M 2 takes time 2 t to reach the ground. If M 1 is dropped from height H 1 and M 2 is dropped from height H 2 , find the ratio $\mathrm{H} 1 / \mathrm{H} 2$.
1/4
1/9
3
4
9

Two identical masses M 1 and $\mathrm{M} 2(\mathrm{M} 1=\mathrm{M} 2=\mathrm{M})$ are dropped from rest from different heights to the ground (neglect air resistance). M1 is dropped from height H, while M2 is dropped from height 4 H . If M1 takes time t 1 to reach the ground and M 2 takes time t 2 to reach the ground, find the ratio $\mathrm{t} 2 / \mathrm{t} 1$.
2
1/9
3
$1 / 2$
9

3* Two particles are thrown from the top of a building with the same initial speed at the same instant of time. Particle(1) is thrown up and particle(2) is thrown down (Neglect air resistance). Comparing their final speeds just before they hit the ground, one of the following statements is CORRECT:

The final speed of both particles will be exactly the same.
The two particles arrive the ground at the same time.
The final speed of Particle(1) is higher.
Particle(1) arrives the ground earlier than Particle(2).
The final speed of Particle(2) is higher.
4 A 3-kg Physics textbook hangs vertically from a wire in an elevator. If the tension in the wire is 33 N , the acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of the elevator is: [Hint: Take the upward direction as positive (+)]
$+1.2$
-1.2
+20.8
$-20.8+9.8$

4* A 2-kg Physiology textbook hangs vertically from a cable in an elevator. If the tension in the cable is 16 N , the acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of the elevator is: [Hint: Take the upward direction as positive (+)]
-1.8
+1.8
+17.8
$-17.8-9.8$

5 You push a box of mass m_{1} with an unknown force F and thus give it an acceleration of $6.0 \mathrm{~m} / \mathrm{s}^{2}$. With the same force F, you push a box of mass m_{2} and give it an acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$. What acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) would your force, F, give to a box of mass $\left(m_{2}-m_{1}\right)$?
3
1.5
2
5.5
6

6 A 4-kg block slides down a hill that is inclined at 20° with respect to the horizontal with an acceleration $1.1 \mathrm{~m} / \mathrm{s}^{2}$ directed up the hill. The coefficient of kinetic friction between the block and the hill is:
0.48
0.24
0.21
0.82
0.34

7 As shown, four masses connected with wires, are hanging from a ceiling. The masses are: $m_{1}=5.5 \mathrm{~kg}$, $m_{2}=2.4 \mathrm{~kg}, m_{3}=9.9 \mathrm{~kg}$, and $\mathrm{m}_{4}=3.6 \mathrm{~kg}$. The tension (in N) in the wire connecting masses m_{1} and m_{2} is approximately:
156
209
54
24
132

50 kg block is at rest on a horizontal frictionless surface. Then a horizontal force F acts on the block
 and accelerates it to the right. If the block travels 30 m in 7 s , find the magnitude of the force F (in N).
61
122
163
41
82

9 The three blocks (A, B, and C) shown next do rest on the table. The weight for block A is 1 N , the weight of block B is 2 N , and the weight of block C is 5 N . The magnitude of the force (in N) exerted by block C on block B is:

3
8
6
2
0

10 The box shown rests on a rough horizontal surface, where the coefficients of static and kinetic friction between the box and the surface are 0.59 and 0.41 respectively. The two forces shown are then applied on the
 box. The box will be on the verge of start moving when the horizontal force F (in N) has the magnitude of:
$\begin{array}{lllll}162.8 & 113.2 & 144.6 & 100.5 & 31\end{array}$

11 The box shown rests on a rough horizontal surface, where the coefficients of static and kinetic friction between the box and the surface are 0.59 and 0.41 respectively. The two forces shown are then applied on the
 box. The box will move at constant speed when the horizontal force F (in N) has the magnitude of:
113.2
162.8
$144.6 \quad 100.5$
31
$12 \mathrm{~A} 0.5-\mathrm{kg}$ ball slides initially at speed of $9.8 \mathrm{~m} / \mathrm{s}$ on a rough horizontal surface. The ball slides 30 m before it stops. The coefficient of kinetic friction between the ball and the surface is:
0.16
0.10
0.29
0.41
0.09

13 Two masses M and 2 M are connected by a string that passes over a very light frictionless pulley. Mass 2 M slides on a 30 degrees inclined plane, while mass M hangs suspended by the string, as shown in the figure. The coefficient of kinetic friction between the mass 2 M and the incline is
 0.30. Find the magnitude of the acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of the suspended mass M as it falls.
4.8
4.3
5.7
7.9
5.4

14 Two masses M1 and M2 are moving on an inclined plane. A force F parallel to the incline is pushing M2 up as shown in the figure. The surface of the inclined plane is frictionless and the angle $\theta=30$ degrees. $M 1=3 \mathrm{~kg}, \mathrm{M} 2=2 \mathrm{~kg}$, and $F=30 \mathrm{~N}$. Find the magnitude of the force (in N) exerted on M1 by M2.
18
15
24
30
36

15 Three masses ($\mathrm{M}, 15 \mathrm{~kg}$, and 10 kg) are connected by massless wires over a massless frictionless pulley as shown in the figure. If the tension in the wire B connecting the 10.0 kg and 15.0 kg masses is 133 N , find the tension (in N) in wire A .
333
517
450
400
350

16 Two masses $A(5-\mathrm{kg})$ and $B(10-\mathrm{kg})$ start sliding down a 20° inclined plane from rest a distance $d=6.6 \mathrm{~m}$ along the incline. The coefficient of kinetic friction between each block and the incline is 0.20 . How long (in s)
 does it take mass A to reach the bottom?
2.96
4.07
8.08
1.51
3.59

17 As shown, the force \boldsymbol{F} is pushing horizontally on the wedge m which is placed on the incline surface. The coefficient of kinetic friction between the wedge and the incline is 0.16 .
 Knowing that $\mathrm{F}=300 \mathrm{~N}, \mathrm{~m}=34-\mathrm{kg}$, and $\theta=20^{\circ}$, the magnitude of the wedge's acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) along the incline is:
3.0
2.2
0.9
14.3
1.9

18 As shown, the force \boldsymbol{P}, of magnitude 70
N , is applied to a $3-\mathrm{kg}$ block to enforce it to accelerate across the ceiling. The coefficient of kinetic friction between the block and the ceiling is 0.26 . Given that the angle θ is 72°, the magnitude of the block's
 acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) is:
4.0
0.7
0.0
11.2
13.7

19 As shown, the two blocks, m_{1} and m_{2}, are connected by a wire of negligible mass. The force F, of magnitude 35 N , is applied to block m_{2}. The coefficient of kinetic
 friction between each block and the horizontal surface is 0.26 . Given that $m_{1}=2-\mathrm{kg}, \mathrm{m}_{2}=1-\mathrm{kg}$, and the angle $\theta=29^{\circ}$, the tension (in N) in the wire is:
17.5
22.0
4.6
316.7
3.9

20 As shown，the two boxes， $m_{c}(3-\mathrm{kg})$ and $m_{w}(5-\mathrm{kg})$ ，are accelerated along a rough horizontal track．The force \mathbf{F} （ 20 N ）acts horizontally upon the left side of box m_{c} ．If the magnitude of the kinetic frictional forces on the m_{c} and m_{w} boxes are 5 N and 7.5 N respectively，what is the magnitude of the force（in N ） exerted by m_{c} box on m_{w} box？
12.2
3.3
23.4
18.9
9.7
＝＝＝＝＝＝＝＝＝＝
＝＝＝＝＝＝＝＝＝＝
＝ニニ＝＝\quad＝ニニ＝＝$===$

You should consider such following questions as a treat！

21 A bicycle moves at $22 \mathrm{~m} / \mathrm{s}$ east for 30 minutes and then reverses direction and moves at $28 \mathrm{~m} / \mathrm{s}$ for 15 minutes．The bicycle＇s total displacement（in $10^{4} \mathrm{~m}$ ）is：
1.44
6.48
3.96
9.98
76.06

22 A block is pulled up a hill at $4 \mathrm{~m} / \mathrm{s}$ and then slides down the hill at $6 \mathrm{~m} / \mathrm{s}$ ．The block＇s average speed during the whole trip（in m / s ）is：
4.8
5
10
7.2
2.8

23 A car is driving east at 40 mile／h for 2.0 h ，then north at 50 mile／h for 1.0 h ，and finally east at $20 \mathrm{mile} / \mathrm{h}$ for 0.50 h ．The car＇s average speed（in mile／h）during the whole trip is：
［Hint： 1 mile $=1600 \mathrm{~m}$ ］
40
32
55
45
37

24 A 9．8－kg box is thrown vertically upward，from ground level，with an initial speed of $9.8 \mathrm{~m} / \mathrm{s}$ ．The box will return back to the ground level after a time period（in s）of： ［Hint：Ignore air resistance］
2
1
0.5
4
9.8

