NOTE: For problems involving gravitational force, use $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$ unless otherwise specified.

1 A $100-\mathrm{kg}$ box rolls down a 20° incline. A man tries to keep it from accelerating, and manages to keep its acceleration to $1.2 \mathrm{~m} / \mathrm{s}^{2}$. If the box rolls 5 m , what is the net work (in J) done on it by all the forces acting on it?
A) 60
B) 100
C) 600
D) 1000
E) 4900

2 Two objects with masses, m_{1} and m_{2}, have the same kinetic energy and are both moving to the right. The same constant force \vec{F} is applied to the left to both masses. If $m_{1}=4 m_{2}$, the ratio of the stopping distance of m_{1} to that of m_{2} is:
A) $1: 4$
B) $4: 1$
C) $1: 2$
D) $2: 1$
E) $1: 1$

3 The same force F is applied horizontally to bodies $1,2,3$ and 4, of masses $m, 2 m, 3 m$ and $4 m$, initially at rest and on a frictionless surface, until each body has traveled distance d. The correct listing of the magnitudes of the velocities of the bodies, v_{1}, v_{2}, v_{3}, and v_{4} is
a.

$$
v_{4}=\sqrt{\frac{4}{3}} v_{3}=\sqrt{\frac{3}{2}} v_{2}=2 v_{1}
$$

b. $\quad v_{4}=v_{2}>v_{3}=v_{1}$.
c. $v_{1}=\sqrt{2} v_{2}=\sqrt{3} v_{3}=2 v_{4}$.
d. $v_{1}=2 v_{2}=3 v_{3}=4 v_{4}$.
e. $v_{4}=\frac{3}{4} v_{3}=\frac{2}{3} v_{2}=\frac{1}{2} v_{1}$.

4 A 1000.0 kg car is moving at $15 \mathrm{~km} / \mathrm{h}$. If 2000.0 kg truck has 18 times the kinetic energy of the car, how fast (in km / h) is the truck moving?
A) 45
B) 63
C) 54
D) 36

5 A $6.0-\mathrm{kg}$ block is released from rest 80 m above the ground. When it has fallen 60 m its kinetic energy (in J) is approximately:
A) 4700
C) 1200
D) 120
E) 60

6 For a block of mass m to slide without friction up the rise of height h shown, it must have a minimum initial kinetic energy of:

```
\(m\)
```

A) $g h$
B) $m g h$
C) $m g h / 4$
D) $m g h / 2$
E) $2 m g h$

7 A car needs to generate 75.0 hp in order to maintain a constant velocity of $27.3 \mathrm{~m} / \mathrm{s}$ on a flat road. What is the magnitude of the total resistive force (in N) acting on the car (due to friction, air resistance, etc.)? ($1 \mathrm{hp}=746 \mathrm{~W}$)
A) 2.05×10^{3}
B) 2.75
C) 1.03×10^{3}
D) 2.87×10^{3}

8 How long (in s) will it take a 7.08 hp motor to lift a 250 kg beam directly upward at constant velocity from the ground to a height of 45.0 m ? Assume frictional forces are negligible (1 hp $=$ 746 W)
A) 20.9
B) 1.56×10^{4}
C) 2.18×10^{4}
D) 39.7

9 A simple pendulum consists of a 2.0 kg mass attached to a string. It is released from rest at X as shown. Its speed (in m / s) at the lowest point Y is:
A) 1.9
B) 3.7
C) 4.4
D) 6.0
E) 36

10 A $0.60-\mathrm{kg}$ object is suspended from the ceiling at the end of a $2.0-\mathrm{m}$ string. When pulled to the side and released, it has a speed of $4.0 \mathrm{~m} / \mathrm{s}$ at the lowest point of its path. What maximum angle does the string make with the vertical as the object swings up?
A) 61°
B) 54°
C) 69°
D) 77°
E) 47°

11 A $2.0-\mathrm{kg}$ mass swings at the end of a light string (length $=3.0 \mathrm{~m}$). Its speed at the lowest point on its circular path is $6.0 \mathrm{~m} / \mathrm{s}$. What is its kinetic energy (in J) at an instant when the string makes an angle of 50° with the vertical?
A) 21
B) 15
C) 28
D) 36
E) 23

12 A roller coaster of mass 80.0 kg is moving with a speed of $20.0 \mathrm{~m} / \mathrm{s}$ at position A as shown in the figure. The vertical height above ground level at position A is 200 m . Hint: neglect friction.
(a) What is the total mechanical energy of the roller coaster at point B ?
Answer: $1.73 \times 10^{5} \mathrm{~J}$
(b) What is the speed of the roller coaster at point C ?
Answer: 34.4 m/s

13 A $2.2-\mathrm{kg}$ block starts from rest on a rough inclined plane that makes an angle of 25° with the horizontal. The coefficient of kinetic friction is 0.25 . As the block goes 2.0 m down the plane, the mechanical energy of the whole system changes (in J) by:
A) 0
B) -9.8
C) 9.8
D) -18
E) 18

14 A crane lifts a 425 kg steel beam vertically a distance of 117 m . How much work (in J) does the crane do on the beam if the beam accelerates upward at $1.8 \mathrm{~m} / \mathrm{s}^{2}$? Hint: neglect friction.
A) 5.8×10^{5}
B) 3.4×10^{5}
C) 4.0×10^{5}
D) 4.9×10^{5}

15 In the figure, two boxes, each of mass 24 kg , are at rest and connected as shown. The coefficient of kinetic friction between the inclined surface and the box is 0.31 . Find the speed of the boxes just after they have moved 1.6 m . Answer: $1.91 \mathrm{~m} / \mathrm{s}$

16 In the figure, a block of mass m is moving along the horizontal frictionless surface with a speed of $5.70 \mathrm{~m} / \mathrm{s}$. If the slope is 11.0° and the coefficient of kinetic friction between the block and the incline is 0.260 , how far does the block travel up the incline? Answer: 3.72 m

