Dr. Mohammad Hussein
PHY 105

1) A PHY 105 student is holding a book of mass m. He walks a distance d at a constant speed v. The work the student has done on the book is:
zero +mgd -mgd $+1 / 2 \mathrm{mv}^{2} \quad-1 / 2 \mathrm{mv}^{2}$
2) Imagine you push a box of mass m a distance d across a floor with constant speed. The coefficient of kinetic friction between the box and the floor is μ_{k}. You then pick up the box, raise it to a height h , carry it back to the starting point, and put it back down on the floor. How much work have you done on the box?
$\mu_{k} m g d \quad$ zero $\quad \mu_{k} m g d+2 m g h \quad \mu_{k} m g d-2 m g h \quad 2 \mu_{k} m g d+2 m g h$
3) When a ball rises vertically to a height 3 h and returns to its original position, the work done on it by the gravitational force is
zero $-6 \mathrm{mgh}-3 \mathrm{mgh}+3 \mathrm{mgh}+6 \mathrm{mgh}$
4) A 20 g particle is moving to the left at a speed of $30 \mathrm{~m} / \mathrm{s}$. How much total work (in J) must be done on the particle to make it move to the right at a speed of $30 \mathrm{~m} / \mathrm{s}$?

zero	+9	-9	+18	-18

5) The engine of a truck of mass 940 kg can deliver an average power of 104800 W . If the truck accelerates from rest, the speed (in m / s) after 4.5 s is: (Ignore air resistance)
31.7
11.2
15.1
4.8
36.6
6) A 100 kg box is pushed at a constant speed of $5.0 \mathrm{~m} / \mathrm{s}$ across a horizontal floor by an applied force F directed 37° above the horizontal. If the rate at which F does work on the box is 0.66 hp , the applied force F (in N) is: Hint: $1 \mathrm{hp}=746 \mathrm{~W}$
123
980
98
164
43
7) A motor lifts a 3000 kg elevator 210 m up during a time interval t at constant speed. If the rate at which the motor does work on the elevator is 362 hp , the time interval t (in s) is: Hint: 1 $\mathrm{hp}=746 \mathrm{~W}$
1.7

5
14.8
19.9
8) A horse drags a heavy cart (200 kg) horizontally on a rough floor at constant speed. The power delivered by the horse is 1.06 hp . The coefficient of kinetic friction between the cart and the floor is 0.115 . The speed (in m / s) with which the cart moves across the floor is:
3.5
0.3
11.7
9.0
2.1
9) A 125 kg cart initially at rest is pulled by three ropes as shown. When the cart moves 100 m horizontally on a frictionless level, it's final speed (in m / s) is:

10) A box of mass m at a height h above the floor has a speed v. Its total mechanical energy is E. A second box of mass m at a height 4 h above the floor has a speed 2 v . The total mechanical energy for the second box is:
4 E
2E
(2) $)^{1 / 2} E$
E
(2) $)^{-1 / 2} E$
11) A box of mass m is moving with an initial speed v on a horizontal level, where the coefficient of kinetic friction is μ_{k}. The box moves a distance d and stops. If the initial speed is doubled, how far will the same box move before it stops?

4d
2d
d^{2}
d
$4 d^{2}$
12) As shown, a bead of mass 0.5 kg immersed in a certain liquid is released from rest at point A. At point B, the bead has a speed of 6 m / s. The work done on the bead (in J) by the viscosity (friction force) of the liquid is:
-5.7
+15
$+9$
-15
-9

13) A 3 kg ball thrown vertically upward has reached a height of 100 m in the presence of air resistance. The air resistance has performed -800 J of work on the ball. Determine the height (in m) the ball would reach if air resistance can be neglected.
127
100
163
196
201
14) A box of mass 18 kg is dropped from rest from a height of 80 m above the floor. The box falls vertically downward and reaches the floor with a speed of $15 \mathrm{~m} / \mathrm{s}$. The work (in $10^{3} \mathrm{~J}$) exerted by the air resistance force on the box is:
-12
-16
$+12$
$+16$
15) A 0.5 kg ball thrown vertically upward with an initial speed of $4.00 \mathrm{~m} / \mathrm{s}$ has reached a maximum height of 0.8 m . What change does air resistance cause in the mechanical energy (in J) of the ball during the upward motion?
0.08
0
16
3.92
4.9
16) As shown, 2 kg block slides along the track with an initial speed v_{o} of $6 \mathrm{~m} / \mathrm{s}$. The blue section of the track is frictionless ($\mu=0$), while the horizontal brown section is rough (μ_{k}). On the rough section, a frictional force stops the block in a distance d . If the height difference h is 1.1 m and μ_{k} is 0.60 , what is d (in m)?

$\begin{array}{lllll}1.2 & 4.5 & 2.6 & 3.4 & 5.7\end{array}$

17) As shown, a block slides at point A with an initial speed of $7 \mathrm{~m} / \mathrm{s}$ along the track. All the sections of the track are frictionless until the block reaches the section L (of length 12 m), where the coefficient of kinetic friction is 0.7 . If the height differences h_{1} and h_{2} are 6 m 2 m respectively, how far (in m) through the section of friction does the block travel before
 it comes to a complete stop?
9.3
$6.3 \quad 10.3$
12
5.7
18) A 1 kg ball is located at the top of a 4 m plane inclined at 45° as shown. The ball begins to slide down the inclined plane from rest. The upper half of the inclined plane is frictionless, while the lower half is rough, with a coefficient of kinetic friction $\mu_{\mathrm{k}}=0.3$. The speed (in m / s) of the ball at the bottom of the inclined plane is:
6.9
5.3
7.5
0.3
1.1

