### **Test Measurements**

Computer Skills for Medical Students The University of Jordan KASIT /Computer Information Systems Department

## Sick or Healthy

- Sick
- Has the Disease
- Abnormal
- Yes
- Positive



- Healthy
- Doesn't Have the Disease
- Normal
- No
- Negative

## **Medical Screening**

Application of a relatively simple, inexpensive test or procedure to a large number of apparently asymptomatic persons, in order to classify them as likely (high probability) or unlikely (low probability) to have the disease.

#### Screening tests vs Diagnostic tests

The primary purpose of **screening tests** is to detect early disease or risk factors for disease in large numbers of apparently healthy individuals.

The purpose of a **diagnostic test** is to establish the presence (or absence) of disease as a basis for treatment decisions in symptomatic or screen positive individuals.

#### Medical Screening and Diagnostic tests

|                      | Screening tests                                                                                                                                        | Diagnostic tests                                                                                                    |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Purpose              | Done to those who are apparently healthy or asymptomatic                                                                                               | Done to those with suggestive signs or symptoms                                                                     |
| Target<br>population | Large numbers of asymptomatic, but potentially at risk individuals                                                                                     | Symptomatic individuals to<br>establish diagnosis, or<br>asymptomatic individuals<br>with a positive screening test |
| Cost                 | Cheap, benefits should justify the costs<br>since large numbers of people will need to<br>be screened to identify a small number of<br>potential cases | Higher costs associated with<br>diagnostic test maybe<br>justified to establish<br>diagnosis.                       |
| Diagnosis<br>results | Results are not conclusive                                                                                                                             | Results are conclusive and final                                                                                    |

#### Medical Screening and Diagnostic tests

| Screening tests           | Diagnostic tests    |
|---------------------------|---------------------|
| Less accurate             | More accurate       |
| Less expensive            | More expensive      |
| Not a basis for treatment | Basis for treatment |

# **Tests Validity**

The validity of the test refers to the extent to which the test is capable of correctly diagnose the presence or absence of the disease.

# **Tests Validity**

Validity is measured by :

- Accuracy .
- Sensitivity.
- Specificity.
- Negative Predictive Value.
- Positive Predictive Value.





# True Negative (TN)

Number of cases where the patient tests negative on a disease when he/she actually does not have the disease.



Example :

If the patient "doesn't have an allergy " and the test is Negative.



Number of cases where the patient tests negative on a disease when he/she actually has the disease.

| Disease | Test     |
|---------|----------|
| Present | Negative |

Example :

If the patient "has an allergy " and the test is Negative.

## Ground Truth and Gold Standard

<u>Gold Standard :</u> refers to a diagnostic method with the best accuracy.

also it refers to the best performing test available .

For example :

MRI is the gold standard for brain tumor diagnosis, though it is not as good as a biopsy.

<u>**Ground Truth**</u> represents the reference values used as standard for comparison purposes.

#### Accuracy

The proportion of the <u>success rate</u> of a given test.

 $Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$ 

## Sensitivity

A measure of the test ability to identify correctly those who have the disease from all individuals with the disease.

 $Sensitivit = \frac{TP}{TP + FN}$ 

### Sensitivity

A test with 100% sensitivity correctly identifies all patients with the disease.

A test with 80% sensitivity detects 80% of patients with the disease (true positives) but 20% with the disease go undetected (false negatives).

A high sensitivity is clearly important where the test is used to identify a serious but treatable disease (e.g. cervical cancer).

## Specificity

A measure of the test ability to identify correctly those who don't have the disease from all individuals free from the disease.

$$Specificity = \frac{TN}{TN + FP}$$

## Specificity

A test with 100% specificity correctly identifies all normal patients.

A test with 80% specificity correctly reports 80% of normal patients as test negative (true negatives) but 20% normal patients are incorrectly identified as abnormal (false positives).

### **Positive Predictive Value (PPV)**

It is the proportion of patients who actually have the disease with positive test results . By computing PPV we see how many of test positives are true positives .

$$PPV = \frac{TP}{TP + FP}$$

**High value of PPV** for a test indicates that when a test gives a positive outcome, it is more likely correct.

Low value of PPV for a test indicates that when a test gives a positive outcome, it is less likely correct.

#### **Negative Predictive Value (NPV)**

It is the proportion of patients who do not have the disease with negative

test results. By computing NPV we see how many of test negatives are true negative.

$$NPV = \frac{TN}{TN + FN}$$

**High value of NPV** for a test indicates that when a test gives a negative outcome, it is more likely correct.

Low value of NPV for a test indicates that when a test gives a negative outcome, it is less likely correct.



|           | Gold              | Standard     |                         |
|-----------|-------------------|--------------|-------------------------|
| Test      | Influenza         | No Influenza |                         |
| Positive  |                   |              | Population Size is :200 |
|           | TP = 80           | FP= 5        |                         |
| Negative  | FN = 20           | TN = 95      |                         |
| ie numbei | r of patients who | The numbe    | r of patients who       |

# Example 1 :

|          | Gold Standard |              |  |
|----------|---------------|--------------|--|
| Test     | Influenza     | No Influenza |  |
| Positive |               |              |  |
|          | TP = 80       | FP= 5        |  |
| Negative | FN = 20       | TN = 95      |  |
|          |               |              |  |

Sensitivity = 80/(80+20) = 0.8 Specificity = 95/(95+5) = 0.95 Accuracy = (80+95)/(200)= 0.875 NPV = 95/(95+20)= 0.826 PPV= 80/(80+5)= 0.4911

| Disease                                                               | No Disease                                             |                                                                                                                     |  |
|-----------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| 90                                                                    | 200                                                    |                                                                                                                     |  |
| 10                                                                    | 800                                                    | _                                                                                                                   |  |
| ) = 0.9                                                               | PPV = 90/(290)                                         | _<br>= 0.31                                                                                                         |  |
| Specificity = 800/ (200 + 800 ) = 0.8<br>Accuracy = 890/ 1100 = 0.809 |                                                        | NPV = 800/(10 + 800) = 0.987                                                                                        |  |
|                                                                       | Disease<br>90<br>10<br>0) = 0.9<br>800) = 0.8<br>0.809 | DiseaseNo Disease $90$ $200$ $10$ $800$ $10$ $800$ $0) = 0.9$ PPV = $90/(290)$ $800) = 0.8$ NPV = $800/(10 - 0.80)$ |  |

#### Example 3 :

In an experiment to test a new blood test that detects a certain abnormality over a population of 5000. The test was able to correctly detect 2550 of the abnormal cases and 1900 of the normal ones. If you know that the population consists of 2600 abnormal cases while the rest are normal, compute:

1- True Positives, True Negatives, False Positives, and False Negatives.

2- Test Detection Accuracy, Sensitivity, Specificity, NPV, and PPV for this experiment.

## Example 3 (Solution)

| True Positives            | 2550        |
|---------------------------|-------------|
| True Negatives            | 1900        |
| False Positives           | 500         |
| False Negatives           | 50          |
| Population size           | 5000        |
| Accuracy                  | 0.89        |
| Sensitivity               | 0.980769231 |
| Specificity               | 0.791666667 |
| Negative Predective Value | 0.974358974 |
| Positive Predictive Value | 0.836065574 |