

Statistics 020 Past Papers

Chapter 3

If $X \sim \operatorname{Bin}(100,0.2)$, then $P(\mu-\sigma \leq X \leq \mu+2 \sigma) \approx$
a) 0.8542
b) 0.2694
c) 0.2467
d) 0.4145
e) 0.8192

Answer: A

Chapter 4

Q1: If $\mathrm{X} \sim \operatorname{normal}\left(\mu, \sigma^{2}\right), \quad$ and $\mathrm{P}(\mathrm{X} \leq \mu-5)=0.1$,
then
$\mathrm{P}(\mathrm{X} \leq \mu+5 \mid \mathrm{X} \geq \mu-5)$
a) 0.889
b) 0.020
c) Can not be determined
d) 1
e) 0.75

Answer: A

Abstract

Q2: Tim goes to a popular restaurant that does not make any reservation for tables. It has been determined that the waiting times for a table are normally distributed with a mean of 18 minutes and standard deviation of 4 minutes. Tim says he will leave if he is not seated at a table within 26 minutes of arriving at the restaurant. The probability that time will leave without being seated equals:

a) 0.0228

Chapter(5

Q1: In a random sample of 1000 studants, 70% prefer to study at the school campus. The standard error (standard devaition) of the ssamp; proportion is:
a) 0.0126
b) 0.0137
c) 0.700
d) 0.0145
e) 0.300

Answer: D
Q2:Let $X_{1}, X_{2}, \ldots, X_{6} \sim$ normal $(20,5)$ and $Y_{1}, Y_{2}, \ldots, Y_{6} \sim$ normal $(20,5)$ be 2 independent samples. Let \bar{X} and \bar{Y} be the 2 sample means.
Let S_{1} and S_{2} be the 2 sample standard deviations.
The value of c for wich $\mathrm{P}(\bar{X}-\bar{Y} \leq \mathrm{c})=0.9850$ is:
a) $\quad 2.74$
b) 0
c) $\quad 6.26$
d) $\quad 2.80$
e) $\quad 2.62$

Answer: D

Chapter 6

Q1: In hypothesis testing, a Type 2 error occurs when:
a) The null hypothesis is not rejected when the null hypothesis is true.
b) The null hypothesis is rejected when the null hypothesis is true.
c) The null hypothesis is not rejected when the alternative hypothesis is true.
d) The null hypothesis is rejected when the alternative hypothesis is true
e) The alternative hypothesis is not rejected when the alternative hypothesis is true.

Answer: C
Q2: A random sample of 8 observation was taken from a normal population. The sample mean is 70 and the sample standard deviation is 20 . When testing at 5% singificance level $H_{0}: \mu=80$ vs. $H_{1}: \mu \neq 80$, we have:
a) The test statistic is $\mathrm{t}=-1.41$ and we don't reject H_{1}
b) The test statistic is $\mathrm{z}=1.41$ and we reject H_{0}
c) The test statistic is $z=-1.41$ and we don't reject
d) The test statistic is $\mathrm{t}=-1.41$ and we reject H_{0}
e) The test statistic is $\mathrm{t}=-1.41$ and we don't reject H_{0}

Answer: E

Chapter 7

Q1: A scientist wishes to estimate the average depth of a river. He wants to be 99% confident that the estimate is accurate within 2.1 cm . From a previous study, the standard deviation of the depths measured was 4.38 cm . The sample size the scientist needs is at least:
a) 26
b) 25
c) $\quad 29$
d) 27
e) 28

Answer: C
Q2: If the 95% confidance interval for the population mean μ is $(54.3,57.7)$, then the point estimate of μ is:
a) 54
b) 55
c) 56

Answer: C

Q3:All of the following increase the width of a confidance interval except:
A) Increased sample size.
B) Decreased sample size.
C) Increased variability.
D) Increased confidance level
E) Decreased significance level.

Answer: A

Q4: In a simple random survey of 89 studants of faculty of medicine at the university of Jordan, 73 said that principals of statistics was the mosts satisfying, most enjoable course thet had ever studied. A98\% confidance interval estimate of the propotion of all faculty of medicine students who feel this way is:
A) 0.820 ± 0.041
B) 0.820 ± 0.095
C) 0.820 ± 0.84
D) 0.820 ± 0.223
E) $\quad 0.820 \pm 0.004$

Answer:B

Q5: The life time (age) in hours of a random sample of one of the batteries produced in Jordan gave the following summary:

Sample size	Sample Average	Sample Standard deviation
$\mathrm{n}=9$	$\bar{X}=95$	$\mathrm{~S}=3$

A 98% confidence interval for the population standard deviation σ is:

