

Isomers

C₂H₆O Mol. Wt.: 46.06844 C₂H₆O Mol. Wt.: 46.06844

C_3H_6

The maximum number of H atoms that the compound can have $= 2 \times n+2$

Each pair of hydrogen atoms less that the maximum hydrogen atoms that the compund can have = a double bond or a cycle

 $C_{6}H_{14}$

H₃CCH₂CH₂CH₂CH₂CH₂CH₃ Condensed

Sckeletal

$\begin{array}{c} \mathsf{CH}_{3}\\ \mathsf{H}_{3}\mathsf{CCH}_{2}\mathsf{CH}_{2}\mathsf{CHCH}_{3}\end{array}$

CH₃ H₃CCH₂CHCH₂CH₃

H₃CCHCH₂CH₂CH₃ CH₃

CH₃ H₃CCH₂CH₂CHCH₃

CH₃ H₃CCH₂CCH₃ CH₃

CH₃ H₃CCH₂CCH₃ CH₃

CH₃ H₃CCHCHCH₃ CH₃

Cyclic

Resonance: general case

* : Lone pair Charge (+ve Or -ve)

* : Lone pair Charge (+ve Or -ve)

N: 5- 2-(6/2) = 0 O: 6- 4-(4/2) = 0 N: 5- 0-(8/2) = +1 O: 6- 6-(2/2) = -1

 CH_4

sp² Hybridization

sp Hybridization

1.18 Classification According to Functional Group

Table 1.6 - The Main Functional Groups						
	Structure	Class of compound	Specific example	Common name of the specific example		
A. Functional groups that are a part of the molecular framework	$-\dot{c}-\dot{c}-\dot{c}$	alkane	CH ₃ —CH ₃	ethane, a component of natural gas		
)c=c<	alkene	CH ₂ =CH ₂	ethylene, used to make polyethylene		
	-C=C-	alkyne	HC≡CH	acetylene, used in welding		
	\bigcirc	arene	\bigcirc	benzene, raw material for polystyrene and phenol		
B. Functional groups containing oxygen						
1. With carbon–oxygen single bonds	—с—он	alcohol	CH₃CH₂OH	ethyl alcohol, found in beer, wines, and liquors		
	$-\stackrel{ }{\overset{ }{}} - 0 - \stackrel{ }{\overset{ }{}} -$	ether	CH ₃ CH ₂ OCH ₂ CH ₃	diethyl ether, once a common anesthetic		

Table 1.6 🥏 continued				
	Structure	Class of compound	Specific example	Common name of the specific example
2. With carbon–oxygen double bonds*	о —С—н	aldehyde	CH ₂ =0	formaldehyde, used to preserve biological specimens
	$-\dot{\mathbf{c}}$	ketone	O ∥ CH₃CCH₃	acetone, a solvent for varnish and rubber cement
3. With single and double carbon–oxygen bonds	о —с—он	carboxylic acid	о ∥ сн₃с—он	acetic acid, a component of vinegar
	-c-o-c-	ester	U ∭ CH₃C—OCH₂CH₃	ethyl acetate, a solvent for nail polish and model airplane glue

Isomers

C₂H₆O Mol. Wt.: 46.06844 C₂H₆O Mol. Wt.: 46.06844

C_3H_6

The maximum number of H atoms that the compound can have $= 2 \times n+2$

Each pair of hydrogen atoms less that the maximum hydrogen atoms that the compund can have = a double bond or a cycle

 $C_{6}H_{14}$

H₃CCH₂CH₂CH₂CH₂CH₂CH₃ Condensed

Sckeletal

$\begin{array}{c} \mathsf{CH}_{3}\\ \mathsf{H}_{3}\mathsf{CCH}_{2}\mathsf{CH}_{2}\mathsf{CHCH}_{3}\end{array}$

CH₃ H₃CCH₂CHCH₂CH₃

H₃CCHCH₂CH₂CH₃ CH₃

CH₃ H₃CCH₂CH₂CHCH₃

CH₃ H₃CCH₂CCH₃ CH₃

CH₃ H₃CCH₂CCH₃ CH₃

CH₃ H₃CCHCHCH₃ CH₃

Cyclic

