Chapter 3: Alkenes and Alkynes.

* Introduction: They are unsaturated hydrocarbons, alkenes have $C=C$ and general formula $C_{n} H_{2 n}$ (as CycloalKane). Alkynes have $C \equiv C$ and general formula $C_{n} H_{2 n-2}$ (as CycloalKenes). * Note : whenever we add π-bond, we remove (2 H).
$\mathrm{C}-\mathrm{C} \longrightarrow \mathrm{CnH}_{2 n+2}$

$$
C=C \longrightarrow \mathrm{C}_{n} \mathrm{H}_{2 n}
$$

$$
\mathrm{C} \equiv \mathrm{C} \longrightarrow \mathrm{C}_{n} \mathrm{H}_{2 n-2}
$$

* Examples :-

* Cumulated structure :- $C=C=C$ sp
* Conjugated structure :- C

* Isolated structure :- $\stackrel{\leftarrow}{ } \subset=C-C=C-C-C=C-C=C-C=c$ $s p^{3}$ carbon Conjugated -1

* Nomenclature of alkanes and alkynes :-
* Use the Same IUPAC rules that mentioned for alkanes except :-
a) Select the longest carbon chain that contains Both $C=C$ b) Number the chain from the end nearer to double or triple bond.
* [If numbering is equidistant] \Rightarrow number the chain from end nearer to $1^{\text {st }}$ substituent number the chain from end based $\stackrel{\Delta}{\square}$ If equidistant on alphabatical order of substituent
c) Indicate the position of $C=C$ or $C \equiv C$, using a lower number.
d) The parent name is ended by:
unumene for alkene ummmmyne for alkyne * Examples of alkenes:

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \quad \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}
$$

Ethene
\rightarrow (Ethylene)
common name
propene
(4) (3) (2) (1)

$$
\mathrm{H}_{3} \mathrm{C}-\mathrm{CH} \rightleftharpoons \mathrm{CH}-\mathrm{CH}_{3}
$$

2-butene
\rightarrow From left the double bond located as (λ) similar to from right 2-Methyl-2-butene nearer Sub \Leftarrow equidistant $\Leftarrow \forall$

* For CycloalKenes:-

Cyclohexane ($\mathrm{C}_{n} \mathrm{H}_{2 n-2}$)

If the CycloalKene has a substituent:
\rightarrow Give number 1 for Carbon of $C=C$
\rightarrow The second carbon should have 2 .
\rightarrow Give substituent the least number.
why we didn't put (1) before Cyclohexane ? because except we always start naming from the alkene.
we should put 1 before Cyclohexene when the sub. is on the first C-double bond $(\square)^{\mathrm{Br}}$

D Cyclopropene

3-Bromocyclopentene

 not(1,3-dibutene)

* Examples of Alkenes:-
 (Acetylene)
Common name

2-butyne
6,6,6- Mri chloro-1-hexyne
* Notes :-

1 If molecule contains $C=C$ and $C \equiv C$:-
a) $\left.c=c-c-c \equiv c-c \quad\} \rightarrow \begin{array}{l}\text { from right: } \\ \text { from left }: \frac{2}{1}, 5 \\ =1\end{array}\right\}$ start numbering : alkene from left: $\stackrel{1}{1}, 4\}$ Choose the lower

c) $C=C-C \equiv C\}$ Equidistant P?? start numbering from alkene.

* $\mathrm{H}_{2} \mathrm{C}^{(1)}={ }^{(2)} \mathrm{H}-\mathrm{C}^{(3)} \equiv{ }^{(4)} \mathrm{CH}$

$\underbrace{1-\text { butene }}_{\text {first }}-\underbrace{-3-y_{n e}}_{\text {parent }}$
4-chloro-1-butene-3-yne

3-Penten-1-yne

* note :- when $C=C$ and $C \equiv C$ are presented in the Same molecule we always start the name with alkene then alkyne regard the numbering.
2] $\mathrm{CH}_{2}=\mathrm{CH}^{3}$ is called Vinyl (common name)
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCl} \longrightarrow$ Vinyl Chloride (chloro-ethene)
$3 \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}$ is called Allyl $\mathrm{H}_{2} \mathrm{C}=\underset{\mathrm{H}}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{Br}$ Allyl Bromide (3-Bromopropene)

* Cis-Trans isomerism in Alkenes:-

* note: If alkene has identical groups (atoms) on the same carbon of $C=C$, there is no Cis nor trans.

no cis nor trans trans

trans-1,5-hebtadiene

trans-1-Bromopropene Br_{r}

(2-trans, 6-trans)-2,6-nona diene.
\longrightarrow you can write it without 2 and 6
since the first to first and second to second.
C cis-2-butene $\mathrm{CH}_{3} / \mathrm{CH}_{3}$ is not on the same carbon.
* Ex: Which one can show cis-trans isomerism?

1-hexene, 1-pentene, 2-methyl-2-pentene, 2-hexene, 3-hexene 2-methyl-2-butene.

2. 1-Pentene
no Cis nor Trans

3 2-methyl-2-Pentene

identical (no cis nor Trans)
4] 2-hexene

fit 3-hexene also

* Reactions of AlKenes and Alkynes:

First For Alkenes :
π bond is broken in reactants and new σ bonds are formed in the product \Rightarrow This type of reaction is called Addition reaction.

 Cyclic
$\xrightarrow[\left(\mathrm{H}^{+}\right) \mathrm{cat} \text {. }]{\stackrel{\text { Solvent }}{\stackrel{\mathrm{H}_{2} \mathrm{O}}{\text { Sal }}} \rightarrow}$

Hydration
"Addition of $\mathrm{H}_{2} \mathrm{O}$ "

Hydrogen Sulfate

Hydrohalogenation

*

* Mechanism of reaction :-
* Electrophile (E) : electron - deficient (ether $+/ \pm$)
species, such as : $\mathrm{H}^{+}, \stackrel{+}{\mathrm{C}} \mathrm{H}_{3}, \mathrm{Cl}-\mathrm{Al}-\mathrm{Cl}$
* Nucleophile ($N u$) : electron -rich species ($-/ \pm$).
such as: Π-bond in alkene or benzene
\rightarrow contains (ex) which is negative.

$$
{ }_{H}^{\circ} \overbrace{H}^{\circ}, \underset{H}{H} \underset{H}{\underset{N}{N}-H}, x^{-}
$$

Now, Mechanism of reaction is consisting of 2 steps.
 intermediate

* mechanism :- Electrophilic Addition reaction] for alkenes and alkynes * Reaction energy diagram :

reaction coordinate
* T.s : Transition state: Bonds are broken and formed at Same time.
\rightarrow before intermediate \rightarrow is forming \rightarrow is breaking
* E_{a} : Activation energy: Difference in energy between reactant and Transition state or intermediate and Transition state.
* Reaction is exothermic ($\Delta H_{r x n}<$ zero).
* Ex.1: Write an intermediate for the following reaction.

* MarKovniKor's rule: It is important if alkene (or alkyne) is not symmetrical.

* MarKovniKov's rule states that:

Electrophile $\left(\mathrm{H}^{+}\right)$is added to Carbon of $\mathrm{C}=\mathrm{C}$ that has more hydrogen that are attatched directly to the carbon.

* Explain: stability of Carbocation

Carbocation "the most stable

2° secondary

 primary
$>\stackrel{\oplus}{\mathrm{C}_{\mathrm{C}}} \mathrm{H}_{3}$ methyl
"the least stable"

* Ex.1) Arrange the stability of Carbocations:

Tertiary >secondary > primary > methyl

* Now, for a reaction
 primary "less stable"
* Notes:
secondary
(1) For Cyclic alkene with substituents.

* Finally, for reactions of alkenes \Rightarrow there is an Oxidation Reaction. \rightarrow number of oxygen atom increased.
(1) Oxidation using $\mathrm{KMnO}_{4} \longrightarrow$ Oxidizing agent

oxidizing agent
(2) Ozonolysis using O_{3} then $\mathrm{Zn} / \mathrm{H}^{+}$.
a)

Two products are obtained.
b)

* σ and π bonds are broken of $C=C$.

break at σ and π bonds

Only 1 product is consumed

* EX: Draw an alkene that upon ozonolysis will produce
 and $\mathrm{H}-\mathrm{C}-\mathrm{H}$. Answer

* Draw an alkene that upon ozonolysis will produce only $\mathrm{CH}_{3}-\stackrel{\mathrm{Ci}}{\mathrm{C}}-\mathrm{CH}_{3}$.
* General Examples:-
(1)

$$
\mathrm{CH}_{3}-\underset{\mathrm{H}}{\mathrm{C}}=\mathrm{CH}_{2} \xrightarrow[(1) \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{OH}^{-}]{ }
$$

(3) Draw the transition state for the above reaction 5

$\left.\begin{array}{l}\text { This reaction is } \\ \text { related to } 1+2\end{array}\right)$

(5)

The answer could be
(6)

* 3.15 : Addition to Conjugate Systems.

$$
C H_{2}=\underset{H}{C}-\underset{H}{C}=\mathrm{CH}_{2} \xrightarrow[H X]{\stackrel{\mathrm{mol}}{H}}
$$

1,3-butadiene.
"conjugated"

* Two products are obtained, 1,2-addition and 1,4-addition products. MarKorniKovs rule is applied.
* Explain. 1,4 -addition product

 (two products)
* Allylic Cation

Remember: methyl, $1^{\circ}, 2^{\circ}$ and 3° carbocations.

* Draw a resonance structure for the following allylic carbocation.

Note: Allylic carbocation is stable due to the [delocalization] of the positive charge.

* Reactions of Alkynes:

$$
\begin{aligned}
& \text { a) With } x_{2} \\
& R-C \equiv C-R \xrightarrow{\frac{1 \mathrm{~mol}}{x_{2}}} \\
& \mathrm{X}=\mathrm{Cl}, \mathrm{Br} \leftarrow \mathrm{Cl}_{2} \text { (trans) }
\end{aligned}
$$

b) With H_{2} (g), Cat. Pt or Ni

Gas it is excess.
But in the presence of Lindlar's catalyst: alkene is'nt affected and just 1π bond is broken in alkyne and cis -product is obtained.

c) With HX: MarKouniKov's rule is applied for $\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$.

d) With $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$and $\mathrm{HgSO}_{4}\left(\mathrm{Hg}^{2+}\right)$.
1π bond is only broken and MarKouniKov's rule is applied.

\longrightarrow This equilibrium is called : tautomerization.

e) With strong base $\left(\mathrm{NaNH}_{2}\right)$:

Terminal alkyne $(R-C \equiv C-H) \xrightarrow[\substack{\text { liq. } \mathrm{NH}_{3} \\ \text { ammonia }}]{\mathrm{NH}_{2}^{\ominus}}\left[\underset{ }{\longrightarrow}-\mathrm{C} \equiv \mathrm{C}_{-}^{\ominus}\right.$: $]$

$$
\xrightarrow[\text { Liq. } \mathrm{NH}_{3}]{\substack{\text { ammonia }}} \stackrel{\mathrm{OH}}{\ominus} \stackrel{\mathrm{NaNH}}{\vdots}
$$

* which hydrogen is the most acidic $\vec{P} \xrightarrow{A}$

It based on the Hybridization of the attatched Carbon. For $S p$-Carbon \Rightarrow hydrogen is the most acidic, while for $s p^{3}$ -hybridized carbon \Rightarrow the acidity is the weakest.

S-character : sp $s p^{2} s p^{3}$

$$
50 \% \quad \sim 33 \% \quad 25 \%
$$

* As 5 -character of Carbon atom increases \Rightarrow the electronegativity increases.

