*Use the Same IUPAC rules that mentioned for alkanes except:-

a) Select the longest carbon chain that contains Both C=C b) Number the chain from the end nearer to double or triple bond.

* [If numbering is equidistant]
$$\Rightarrow$$
 number the chain from
end nearer to 1^{st} substituent
number the chain from end based 1^{st} requidistant
on alphabatical order of substituent
c) Indicate the position of $C = C$ or $C = C$, using a lower
number.
d) The parent name is ended by:
member of alkenes:
H₂C = CH₂ CH₃-CH = CH₂ $H_2^{c} = C - C - C + 3$
 $H_2^{c} = CH_2$ CH₃-CH = CH₂ $H_2^{c} = C - C - C + 3$
 $H_2^{c} = CH_2$ CH₃-CH = CH₂ $H_2^{c} = C - C - C + 3$
 $H_2^{c} = C + 2$ CH₃-CH = CH₂ $H_2^{c} = C - C - C + 3$
 $H_2^{c} = C + 2$ CH₃-CH = CH₂ $H_2^{c} = C - C - C + 3$
 $H_2^{c} = C - C + 3$ $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$ $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$ $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$ $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$ $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$ $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$ $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$ $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C - C + 3$
 $H_2^{c} = C + 3$
 H_2

* Examples of Alkynes:-
H-C=C-H
(Acetylene)
Common name
* Notes :-
1 If molecule contains C=C and C=C :-
a) C=C-C-C=C-C
$$\begin{cases} + \text{from right}: 2/5 \\ + \text{from left}: 1/4 \\ + \text{from left}: 2/5 \\ + \text{from right}: 2/5 \\ + \text{from right}: 2/5 \\ + \text{from left}: 1/4 \\ + \text{from alkene.} \end{cases}$$

$$k = H_2C = C + C = C + H_2C = H_2C + H_2C = H_2C + H_2C = H_2C + H_$$

* note: when C=C and C=C are presented in the Same molecule we always start the name with alkene then alkyne regard the numbering.

$$\frac{2}{3} \quad (H_2 = CH \text{ is called Vinyl (common name}))$$

$$H_2 C = CH Cl \longrightarrow Vinyl \text{ Chloride (chloro-ethene)}$$

$$\frac{3}{4} \quad H_2 C = CH - CH_2 \text{ is called Allyl} \quad H_2 C = C - CH_2 Br \text{ Allyl Bromide}$$

$$H_2 C = CH - CH_2 \text{ is called Allyl} \quad H_2 C = C - CH_2 Br \text{ Allyl Bromide}$$

* note: If alkene has identical groups (atoms) on the same carbon of C=C, there is no Cis nor trans.

* Ex: Which one can show Cis-trans isomerism? I-hexene, I-pentene, 2-methyl-2-pentene, 2-hexene, 3-hexene 2-methyl-2-butene.

★ Reactions of Alkenes and Alkynes: First For Alkenes: T bond is broken in reactants and new bonds are formed in the product → This type of reaction is called Addition reaction.

* Mechanism of reaction:* Electrophile (E): electron - deficient (ether +/±)
Species, such as: H⁺, ČH₃, cI-AI-cI
* Nucleophile (Nu): electron -rich species (-/±).
such as: T-bond in alkene or benzene
• contains (ē) which
• such as: T-bond in alkene or benzene

* mechanism:-Electrophilic Addition reaction for alkenes and alkynes * Reaction energy diagram:

reaction coordinate

* MarKovniKov's rule: It is important if alkene (or alkyne) is not symmetrical. $H_{+} = \subset_{H}^{H} \xrightarrow{H_{+}}_{H_{+}} H_{+} \stackrel{\chi}{-} \stackrel{H}{-} \stackrel{H}{-} \stackrel{H}{-} H_{+}$

* MarKovniKov's rule states that: Electrophile (H^{\dagger}) is added to Carbon of C=C that has more hydrogens that are attatched directly to the carbon.

- * Draw an alkene that upon ozonolysis will produce only CH3-C-CH3.
- * General Examples :- $() \quad CH_{3}-C=CH_{2} \xrightarrow{() \quad BH_{3}}{() \quad H_{2}\circ_{2}, oH^{-}} \quad CH_{3}-CH_{3}-CH_{2} \quad (Anti MarKvnikov)$ 3 Draw the transition state for the above reaction 5 bond Forming H.....B-H (This reaction is) (This reaction is) (related to 1+2) ((Ч) (СH3CH2ČH2)₂В + H2O2 + OH →ЗСH3 CH2 cH2 сH2 cH2 5 The answer could H-c-c=cH₂ H-c-c=cH₂ H+cH₃ Methyl propene H₂(g) H-c-c-c-cH₃ H (H) H-c-c-c-cH₃

* Two products are obtained, <u>1,2</u>-addition and <u>1,4</u>-addition products. Markovnikovs rule is applied. * Explain. 1,4- addition product

* Allylic Cation $\sum = \zeta - \zeta - \zeta$

Remember: methyl, l°, 2° and 3° carbocations. * Draw a resonance structure for the following allylic carbocation. (Allylic) \longrightarrow \longrightarrow (Allylic) \longrightarrow \longrightarrow Mote: Allylic carbocation is stable due to the delocalization of the positive charge.

* Reactions of Alkynes: a) With χ_2 $CH_3 - C \equiv C - CH_3 \xrightarrow{excess} CH_3 - C = C - CH_3$ b) With H2 (g), Cat. Pt or Ni But in the presence of Lindlar's catalyst : alkene isn't affected and Just 17 bond is broken in alkyne and cis - product is obtained. $CH_{3}-C\equiv C-CH_{3} \xrightarrow[Lindlar's]{H_{2}(9)} C=C$ Lindlars Cat. (idenfical) C) With HX: MarKovnikov's rule is applied for R-C≡C-H.

