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DNA Damage and Repalr

« DNA damage Is a common occurrence
— Cells require a restoration process
* DNA repair
 DNA damage can come from

— Endogenous agents - formed inside the cell

— Exogenous agents - come from the surrounding
environment
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« Exposure to high energy electromagnetic
radiation can cause considerable DNA damage
— UV Light
— Gamma Rays
— X-Rays
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« 2 major types of pyrimidine dimers account for nearly
all UV-induced damage

— Cyclobutane pyrimidine dimers

« Most common are thymine-thymine dimers
— The (6-4) photoproduct

* causes a major distortion in B-DNA
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Radiation Damage

X-rays and gamma rays cause many different
types of DNA damage

* Direct damage

— DNA or water tightly bound to it absorb the
radiation

 Indirect damage

— Water molecules surrounding DNA absorb the
radiation and generate reactive species (free
radicals)
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 Lesions may be isolated or clustered
— Clustered lesions

» Double-stranded breaks can cause a variety of
chromosomal aberrations

—Translocations
—Inversions
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Radiation Damage

» ~65% of the DNA damage caused by X-rays
and y-rays Is due to indirect effects
— Formation of 3 highly reactive chemical species
« H20* (water radical cation)
 *OH (hydroxide radical)
* O, (Ssuperoxide)
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DNA Instability in Water

DNA 1s damaged by hydrolytic cleavage
reactions

« DNA has 3 kinds of bonds sensitive to
hydrolytic cleavage

1. Phosphodiester bonds
2. N-glycosyl bonds

3. Bonds linking amine groups to the rings in C,A
and G (deamination)
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DNA Instability in Water

» Phosphodiester bond breakage is rare and
probably not significant

* N-glycosyl bond cleavage forms an abasic site
— Loss of information (no base identifier)

« Deamination
— Glves rise to

e Transition mutations
e Transversion mutations
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FAILURE TO REPAIR A DEAMINATED
BASE = A POINT MUTATION
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Chemical mutagens

Deamination by nitrous acid
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DNA Instability in Water

(a) Transition mutations

(b) Transversion mutations
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Figure 09.05: Transition and transversion mutations. (a) A transition mutation. (b) A

transversion mutation.
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Oxidative Damage

Reactive oxygen species damage DNA
« *OH (hydroxide radical)

— Generated by i1onizing radiation or cellular H,0O,
— g-oxyguanine: 0X0G-A >T-A ftransversion

— Can produce cytotoxic mutations: thymine glycol
> Inhibit replication
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Alkylation Damage by I\/Iono
Formation

 DNA is readily attacked by electron seeking
chemicals termed electrophiles

— Alkylating agents: electrophiles that transfer
methyl, ethyl or larger alkyl groups to DNA

 The product formed is called an adduct
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Alkylation Damage by I\/Iono
Formation

« Many environmental agents become active
alkylating agents after they have been
metabolized
— Commonly have 2 or more fused aromatic rings
— Only damage DNA after being metabolized
— Requires Cytochrome P450
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Many alkylating agents have 2 reactive sites and
can form intrastrand or interstrand cross-links

— Interstrand crosslinks prevent strand separation
and are lethal

— Crosslinking agents are often used as
chemotheraputics

 Nitrogen Mustard Gas
» Cisplatin
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Chemical Cross-Linking Agents
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Bis(2-chloroethyl)methylamine (nitrogen mustard gas)
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Figure 09.13: Nitrogen mustard gas, an agent that causes crosslink formation.
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Direct Reversal of Damage

Photolyase reverses damage caused by
cyclobutane pyrimidine dimer formation

 Early observations suggested that UV damage
In bacterial DNA could be repaired by

exposure to visible light - photoreactivation

— UV Irradiation induces cyclobutane dimer
formation

— Photoreactivation reverses this

— Energy provided by blue light (350-450nm)
 Cyclobutane pyrlmldlne dimer photolyase
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Figure 09.14: Photolyase catalyzes a light driven reaction that disrupts the cyclobutane
ring in cyclobutane pyrimidine dimers, reversing the effect of UV irradiation.
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Direct Reversal of Damage

(6-4) photolyase catalyzes the

here

reaction shown
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Figure 09.15: Reaction catalyzed by the (6-4) photolyase.
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Direct Reversal of Damage

« Another means of direct damage reversal is
dealkylation

— Of%-alkylguanine DNA alkyltransferase | can
remove methyl groups attached to O-6 in guanine

— Enzyme loses activity after acting only 1 time
» Suicide enzyme

» Methylation of the enzyme converts it to a
transcriptional activator of itself and other DNA
repair systems

— Human alkylguanine DNA alkyltransferase is of
great interest in tumor cell biology
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Base Excision and Repair

The base excision and repair pathway removes
and replaces damaged or inappropriate bases

« Damage that cannot be repaired by a single
enzyme reversal must rely on a multistep
pathway - base excision repair
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Base Excision and Repair

Base excision derives its name from the 15t step
of N-glycosyl bond cleavage that forms an
abasic site

» Cells must use different enzymes
— Some are monofunctional DNA glycosylases

— Others have additional AP lyase function that
cleaves the bond between the sugar and the
phosphate 3" to the damaged site
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Base Excision Repalr

(a) Catalytic activity of monofunctional DNA glycosylase
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Figure 09.17A: Monofunctional and
bifunctional DNA glycosylases. (a)
Monofunctional DNA glycosylases excise
a damaged base.

(b) Catalytic activity of bilunctional DNA glycosylasa/lyase
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Figure 09.17B: Monofunctional and
bifunctional DNA glycosylases. (b)
Bifunctional DNA glycosylases also have
an AP lyase activity.
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Base Excision Repair

Base excision pathway can be divided into 2
stages

1. Base excision and chain cleavage
— DNA glycosylase excises the damaged base

— AP endonuclease hydrolyzes the phosphodiester
bond

2. Nucleotide replacement and ligation
— 2 subpathways
« Short patch repair
» Long patch repair
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(Adapted from Schaerer, O. D. 2003. Angew
Chem Int Ed Engl 34:2946—-2974.)
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Base Excision Re
« Short patch repair

— Replaces only one nucleotide

— Uses DNA polymerase 3

— DNA ligase completes the repalir

* Long patch repair
— Replaces 2 or more nucleotides
— Uses DNA polymerase o or
— Flap endonuclease cleaves the displaced strand
— DNA ligase seals the nick
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Nucleotide Excision Repair

Nucleotide excision repair removes bulky adducts from
DNA by excising an oligonucleotide bearing the
lesion

— Damage recognition
— Cutting DNA on each side of the lesion
— Excision of the oligonucleotide

— Synthesis of new DNA using undamaged strand as
template

— Ligation of the remaining nick
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Nucleotide Excision Repair

 Eukaryotes have a similar repair system

* Individuals with a defect in the pathway suffer
from xeroderma pigmentosum
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Nucleotide Excision Repair
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Figure 09.19: Bacterial nucleotide
excision repair pathway.
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Mismatch Rei

The DNA mismatch repair system removes mismatches
and short insertions or deletions that are present in the
DNA

« DNA replication Is very accurate

— DNA polymerase introduces 1 mispair in 10°
nucleotides

— 3" =5’ proofreading exonuclease increases
fidelity to 1 mispair in 107 nucleotides

 This level would still result in a high mutation rate
 Slippage can also occur in repeat sequences
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Mismatch Rei

E. Coli mismatch repair systems

— Differs from Gram positive bacteria and
eukaryotes

— Mismatch repair system can distinguish the newly
synthesized

 Only the parental strand has methyl groups
attached to the sequence GATC

» Un-methylated (newly synthesized) DNA with a
mismatch can be cut at GATC
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Figure 09.20: E. coli mismatch repair system. The newly synthesized DNA strand (light blue)

with a mismatch (orange) is transiently unmethylated at GATC sites.
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Mismatch Rei

« DNA mismatch activates MutS-MutL ATP
complex

— Stimulates the MutH endonuclease

— MutH endonuclease cleaves the nearest
unmethylated GATC and exonucleases digest the
nicked strand

— Resulting gap is filled in by DNA Pol 1|
holoenzyme
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Mismatch Rei

Eukaryotes have a similar system

» The MutS homolog has endonuclease activity

— Lagging strand is recognized because of Okazaki
fragments

— Leading strand recognition is not understood yet
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