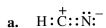
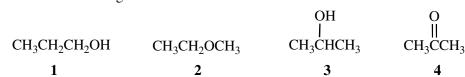
# Part III Test Bank Chapter 1 Bonding and Isomerism


# Valence, Bonding, and Lewis Structures

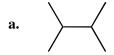
| 1.1.  | What is the most electropositive element?                                                                                                                                                                                                                       |            |             |           |             |          |            |         |             |                  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-----------|-------------|----------|------------|---------|-------------|------------------|--|
|       | *a.                                                                                                                                                                                                                                                             | Li         | b.          | Be        | c.          | В        | d.         | C       | e.          | N                |  |
| 1.2.  | Whic                                                                                                                                                                                                                                                            | h of the f | Collowing   | g elemer  | nts has 5 e | lectrons | in the val | ence (o | uter) shell | ?                |  |
|       | a.                                                                                                                                                                                                                                                              | C          | b.          | В         | c.          | S        | d.         | F       | *e.         | P                |  |
| 1.3.  | Which of the following would you expect to have ionic bonds?                                                                                                                                                                                                    |            |             |           |             |          |            |         |             |                  |  |
|       | *a.                                                                                                                                                                                                                                                             | $MgF_2$    | b.          | CO        | c.          | ICl      | d.         | $Br_2$  | e.          | $NF_3$           |  |
| 1.4.  | Which of the following would you expect to have polar covalent bonds?                                                                                                                                                                                           |            |             |           |             |          |            |         |             |                  |  |
|       | a.                                                                                                                                                                                                                                                              | $MgF_2$    | b.          | $N_2$     | c.          | $F_2$    | *d.        | $NF_3$  | e.          | NaF              |  |
| 1.5.  | Which molecule has nonpolar covalent bonds?                                                                                                                                                                                                                     |            |             |           |             |          |            |         |             |                  |  |
|       | a.                                                                                                                                                                                                                                                              | NO         | *b.         | $N_2$     | c.          | $BCl_3$  | d.         | HF      | e.          | $CCl_4$          |  |
| 1.6.  | The number of electrons in the valence shell of aluminum is:                                                                                                                                                                                                    |            |             |           |             |          |            |         |             |                  |  |
|       | a.                                                                                                                                                                                                                                                              | 1          | b.          | 2         | *c.         | 3        | d.         | 4       | e.          | 5                |  |
| 1.7.  | Which of the following elements is the most electronegative?                                                                                                                                                                                                    |            |             |           |             |          |            |         |             |                  |  |
|       | *a.                                                                                                                                                                                                                                                             | O          | b.          | S         | c.          | Se       | d.         | Te      | e.          | Po               |  |
| 1.8.  | If the Cl–Cl bond length is 1.98Å and the C–C bond length is 1.54Å, what would you expect the bond length of Cl–C to be?                                                                                                                                        |            |             |           |             |          |            |         |             |                  |  |
|       | a.                                                                                                                                                                                                                                                              | 0.74 Å     | b.          | 1.54Å     | *c.         | 1.76Å    | d.         | 1.98Å   | e.          | $3.52\text{\AA}$ |  |
| 1.9.  | Given the following electronegativity values, predict the most polar covalent bond below:                                                                                                                                                                       |            |             |           |             |          |            |         |             |                  |  |
|       |                                                                                                                                                                                                                                                                 | F          | 4.0         |           |             |          |            |         |             |                  |  |
|       |                                                                                                                                                                                                                                                                 | Cl         | 3.0         |           |             |          |            |         |             |                  |  |
|       |                                                                                                                                                                                                                                                                 | O          | 3.5         |           |             |          |            |         |             |                  |  |
|       |                                                                                                                                                                                                                                                                 | C          | 2.5         |           |             |          |            |         |             |                  |  |
|       |                                                                                                                                                                                                                                                                 | Н          | 2.1         |           |             |          |            |         |             |                  |  |
|       | *a.                                                                                                                                                                                                                                                             | C–F        | b.          | C-Cl      | c.          | С-О      | d.         | С-Н     | e.          | C-C              |  |
| 1.10. | The most electronegative elements in the periodic table are generally found                                                                                                                                                                                     |            |             |           |             |          |            |         |             |                  |  |
|       | <ul> <li>a. toward the left in a horizontal row and toward the top in a column.</li> <li>*b. toward the right in a horizontal row and toward the top in a column.</li> <li>c. toward the left in a horizontal row and toward the bottom in a column.</li> </ul> |            |             |           |             |          |            |         |             |                  |  |
|       | c.                                                                                                                                                                                                                                                              | toward     | tne left 11 | n a noriz | zontal row  | and tov  | vara the b | ottom 1 | n a columi  | n.               |  |

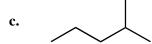
**d.** toward the right in a horizontal row and toward the bottom in a column.

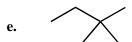

**e.** distributed randomly throughout the table.

**1.11.** In which of the following electron-dot formulas is the Formal Charge incorrectly assigned?




# **Structural Isomers**


1.12. Which of the following molecules are structural isomers?




- **a.** 1, 2, and 4 \***b.** 1, 2, and 3 **c.** 1, 3, and 4 **d.** 2, 3, and 4 **e.** 3 and 4

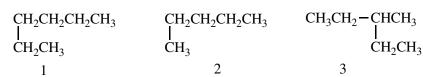
**1.13.** Which of the following abbreviated structural formulas is <u>NOT</u> an isomer of the others?



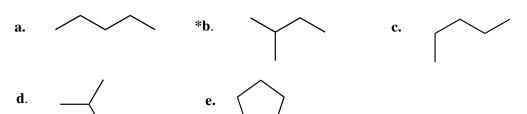




- The number of possible acyclic hydrocarbons with the molecular formula C<sub>4</sub>H<sub>6</sub> is
  - **a.** 2
- **b.** 3
- \*c. 4
- **d.** 5
- **e.** 6


Which of the following structural formulas represents a structural isomer of 1.15. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>?

a. 
$$CH_3CH_2CH_2$$
  
 $I$   
 $CH_2CH_3$ 


- CH<sub>3</sub>CH<sub>2</sub>CHCH<sub>3</sub>
- $\mathbf{c}$ .  $(CH_3)_2CHCH_3$

- $CH_3CH_2CH(CH_3)_2$
- CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub>

1.16. Which of the following molecules are structural isomers?



- **a.** 1, 2 and 3 \*d. 1, 3 and 5
- **b.** 1, 3 and 4 **e.** 2 and 3
- **c.** 2, 3 and 5
- 1.17. Which of the following abbreviated structural formulas represents a structural isomer of CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>?



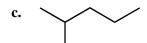
### **Structural Formulas**

- The structural formula for (CH<sub>3</sub>)<sub>2</sub>C(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub> is
  - $CH_3CH_2CH_3 = CH_3CH_2CH_3$ CH<sub>3</sub>CH<sub>3</sub>CCH<sub>2</sub>CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub> b. a.

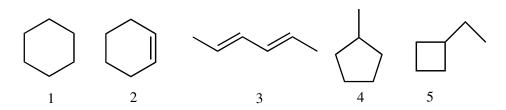
c. 
$$H_3C$$
 $C$ 
 $CH_2CH_3$ 
 $H_3C$ 
 $CH_2CH_3$ 
 $CH_2CH_3$ 

- $C_7H_{16}$ e.
- **1.19.** The structural formula




has the molecular formula

- **a.**  $C_6H_{10}$
- **\*b.**  $C_8H_{14}$  **c.**  $C_8H_{16}$  **d.**  $C_8H_{18}$  **e.**  $C_8H_{20}$


1.20. Which of the following structural formulas does not have the molecular formula C<sub>6</sub>H<sub>14</sub>?



(CH<sub>3</sub>)<sub>3</sub>CCH<sub>2</sub>CH<sub>3</sub>



- (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>CH<sub>3</sub> \*d.
- 1.21. Which of the following structural formulas has the molecular formula  $C_6H_{12}$ ?



- **a.** 2 and 3
- **b.** 1 and 4
- \*c. 1, 4, and 5 d. 1 and 2
- **e.** 4 and 5
- The structural formula for  $(CH_3CH_2)_2CHCH_2CH(CH_3)_2$  is 1.22.
  - a.  $C_9H_{20}$

- $CH_3$ CH<sub>3</sub>CH<sub>2</sub>CHCH<sub>2</sub>CHCH<sub>3</sub> \*b.  ${\rm CH_2CH_3}$
- CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHCHCH<sub>3</sub>

  CH<sub>2</sub>CH<sub>3</sub> c.

- d.
- CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH
- 1.23. The structural formula



has the molecular formula

- **a.**  $C_7H_{16}$
- **b.**  $C_6H_{14}$
- \***c.**  $C_7H_{14}$
- **d.**  $C_6H_{12}$  **e.**  $C_7H_{12}$

#### 1.24. The structural formula

has the molecular formula

\***a.**  $C_{10}H_{16}$ 

**b.**  $C_9H_{18}$ 

**c.**  $C_{10}H_{22}$  **d.**  $C_6H_{14}$ 

**e.**  $C_{10}H_{18}$ 

# Formal Charge, Resonance, and Curved-Arrow Formalism

1.25. For carbon :C≡O:, C has a formal charge of: monoxide,

**\*b.** −1

**c.** 0

**d.** -2

**e.** +2

**1.26.** For carbon :C≡O:, O has a formal charge of: monoxide,

\***a.** +1

**b.** -1

**c.** 0

**d.** -2

**e.** +2

**1.27.** What is the formal charge of N in HNO<sub>3</sub>, as seen below?

\*a. +1

**b.** +2

**c.** 0

**d.** −1

1.28. The formal charges in the perchlorate ion are

\*a. -1 on each O and +3 on the Cl.

**b.** 0 on each O and -1 on the Cl.

 $\mathbf{c}$ . -1 on each O and +4 on the Cl.

**d.** -1/4 on each O and 0 on the Cl.

e. +1 on each O and -1 on the Cl.

Which of the following structures is a resonance structure of

- a.  $H_2C$  ...  $H_2C$   $CH_2$   $H_2C$   $CH_2$   $H_2C$   $CH_2$   $H_2C$   $CH_2$   $CH_2$

- The formal charges in the complex 1.30.

are

- \*a. 0 on each H, +1 on N, and -1 on B.
- **b.** +1 on each H, +1 on N, and -1 on B.
- c. 0 on each H, -1 on N, and +1 on B.
- **d.** 0 on each H, 0 on N, and 0 on B.
- e. -1 on each H, +3 on N, and +3 on B.
- 1.31. The curved arrows in the resonance structure for the acetate ion shown below

indicate the following alternative resonance structure for the acetate ion:

- **a.**  $H_3C C$  **b.**  $H_3C C$  \*c.  $H_3C C$

# **Electronic Structure and Molecular Geometry**

**1.32.** What is the percent s character in an  $sp^3$  hybridized orbital?

\*a. 25%

**b.** 33%

**c.** 50%

**d.** 67%

**e.** 75%

**1.33.** The maximum number of electrons that a molecular orbital can contain is:

**\*b.** 2

**c.** 3

**d.** 4

1.34. The approximate H–C–H bond angle in methane is:

**b.** 90°

\*c. 109.5°

**d.** 120°

**e.** 180°

1.35. The Lewis structure of methane is



The approximate H-C-H bond angle in methane is

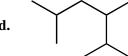
**a.** 60°

**b.** 90°

\*c. 109.5°

**d.** 120°

**e.** 180°


# **Classification of Organic Compounds**

**1.36.** Which of the following molecules is carbocyclic?

CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub>



CH<sub>3</sub>CHCH<sub>3</sub>



CH<sub>3</sub>OCH<sub>2</sub>CH<sub>3</sub>

**1.37.** Which of the following molecules contain the same functional group?

CH<sub>3</sub>OH

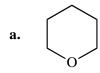
CH<sub>3</sub>OCH<sub>3</sub> 2

**\*b.** 1, 3 and 4

CH<sub>3</sub>CH<sub>2</sub>OH 3

CH<sub>3</sub>CH(OH)CH<sub>3</sub>

1


**a.** 1, 2 and 3

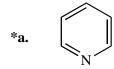
**c.** 1 and 2

**d.** 2 and 4

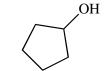
**e.** 3 and 4

**1.38.** Which of the following molecules is acyclic?




\*b.

c. OH

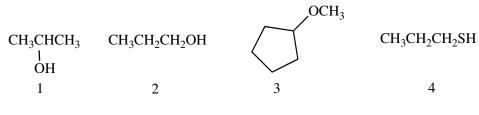



e. (

**1.39.** Which of the following molecules is heterocyclic?



b.




c.

d.

e.

**1.40.** Which of the following molecules contain the same functional group?



- **a.** 1, 2 and 3 \***d.** 1 and 2
- **b.** 1, 2 and 4
- **e.** 1 and 3

**c.** 2 and 4

# **Chapter 2**

# Alkanes and Cycloalkanes; Conformational and Geometric Isomerism

### **Alkane Nomenclature and Structural Formulas**

| 2.1. | What is the | molecular | formula | of an | alkane that | has fourtee | n carbon | atoms? |
|------|-------------|-----------|---------|-------|-------------|-------------|----------|--------|

- **a.**  $C_{14}H_{28}$  \***b.**  $C_{14}H_{30}$  **c.**  $C_{14}H_{32}$  **d.**  $C_{14}H_{34}$  **e.**  $C_{14}H_{26}$

- \***a.**  $C_5H_{10}$
- **b.**  $C_5H_{12}$  **c.**  $C_5H_{14}$
- **d.**  $C_5H_8$

- a. methane
- \*b. ethane
- c. propane
- **d.** butane **e.** isobutane

#### 2.4. The correct IUPAC name for the following molecule is:

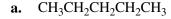
- **a.** 6-ethyl-3,4,-dimethylheptane
- b. 2-ethyl-4,5-dimethylheptaned. 3.5.6-trimethyl
- \*c. 3,4,6-trimethyloctane
- **d.** 3,5,6-trimethyloctane

e. none of these

#### 2.5. What is the common name for the following molecule?



- \*a. isobutyl bromide b. tert-butyl bromide c. butyl bromide
- **d.** sec-butyl bromide **e.** bromo-sec-butane


#### The name of the alkyl group that contains two carbons is: 2.6.

- a. methyl
- **\*b.** ethyl

c. propyl

- **d.** isopropyl
- e. none of these

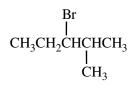
### **2.7.** Which of the following structures is 2-methylpentane?



\*b. CH<sub>3</sub>CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>

CH<sub>3</sub>






e. CH<sub>3</sub>CH<sub>2</sub>CHCH<sub>3</sub> | | CH<sub>3</sub>

### **2.8.** The name of the alkyl group below is:

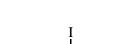
- a. ethyl
- **b.** propyl
- \*c. isopropyl
- **d.** butyl
- e. isobutyl

### **2.9.** What is the IUPAC name for the following compound?

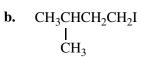


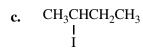
a. isohexyl bromide

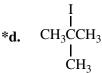
- **b.** 3-bromo-4-methylpentane
- **c.** 1-bromopropylpropane
- \*d. 3-bromo-2-methylpentane
- e. 2-methyl-3-bromopentane
- **2.10.** The IUPAC name for the following molecule is:


### CH<sub>3</sub>CH<sub>2</sub>CHClC(CH<sub>3</sub>)<sub>3</sub>

**a.** 3-chloroheptane


**b.** 2-chloro-1,1,1-trimethylbutane


**c.** *t*-butylpropyl chloride

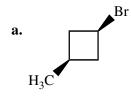

- **d.** 3-chloro-1-dimethylpentane
- \*e. 3-chloro-2,2-dimethylpentane
- **2.11.** Which of the following structures is *tert*-butyl iodide?

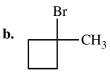


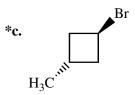
a. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>I

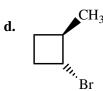


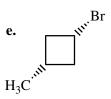






# **2.12.** What is a correct name for the following molecule?





- **a.** 2,2-dichlorocyclopropane
- **c.** 1,1-dichloropropane
- \*e. 1,1-dichlorocyclopropane
- **b.** 1,1-dichlorocyclopentane
- **d.** trans-1,1-dichlorocyclopropane


# **2.13.** *Trans*-1-bromo-3-methylcyclobutane is represented by which structure below?

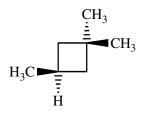











### **2.14.** What is the correct name for the following cycloalkane?

- a. bromoethylcyclohexane
- **c.** *cis*-3-bromo-1-ethylhexane
- \*e. *cis*-1-bromo-3-ethylcyclohexane
- **b.** *trans*-1-ethyl-3-bromocyclohexane
- **d.** 1-bromo-3-ethylcyclohexane

# **2.15.** The correct IUPAC name for (CH<sub>3</sub>)<sub>2</sub>CHCH(CH<sub>3</sub>)(CH<sub>2</sub>)<sub>3</sub>CH(CH<sub>3</sub>)<sub>2</sub> is

- a. diisopropylpentane.
- **b.** 1,1,2,6,6-pentamethylhexane.
- **c.** 2,5-diisopropylpentane.
- \***d.** 2,3,7-trimethyloctane.
- **e.** 1,4-diisopropylpentane.

#### **2.16.** The correct IUPAC name for



is

- **a.** 1,3,3-trimethylcyclobutane.
- **b.** *cis*-1,3,3-trimethylcyclobutane.
- **c.** *trans*-1,3,3-trimethylcyclobutane.
- \*d. 1,1,3-trimethylcyclobutane.
- **e.** 2,2,4-trimethylcyclobutane.

### **2.17.** The structural formula for 2,2,3-trimethylhexane is



b.

c. (CH<sub>3</sub>)<sub>2</sub>CCH<sub>2</sub>CH<sub>3</sub>

\*d.

e. (CH<sub>3</sub>)<sub>3</sub>CCHCH<sub>3</sub> | | CH<sub>3</sub>

# **Alkane Properties**

- **2.18.** Which of the following would exhibit hydrogen bonding?
  - a. CH<sub>3</sub>Cl
- **\*b.** CH₃OH
- $\mathbf{c}$ .  $CH_4$
- d. CH<sub>2</sub>Cl<sub>2</sub>
- e. CH<sub>3</sub>CH<sub>3</sub>
- **2.19.** Which of the following alkanes would have the highest boiling point?
  - a. pentane

- **b.** isopentane
- c. neopentane

\*d. hexane

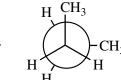
- e. isohexane
- **2.20.** What statement does NOT apply to the boiling points of <u>alkanes</u>?
  - **a.** The boiling point increases as the length of the carbon chain increases.
  - **b.** Straight chain alkanes have a higher boiling point than their branched isomers.
  - **c.** Because they are nonpolar, alkanes have lower boiling points than other organic compounds of similar molar mass.
  - **d.** The boiling points are affected by Van der Waals attractions.
  - \*e. The boiling points are influenced by hydrogen bonding.

- **2.21.** Which cycloalkane has the highest boiling point?
  - a. cyclopropane
- **b.** cyclobutane
- c. cyclopentane

- d. cyclohexane
- \*e. cyclooctane
- **2.22.** The boiling points of normal alkanes
  - **a.** rise as the length of the carbon chain increases.
  - **b.** rise as the length of the carbon chain decreases.
  - **c.** are higher than the boiling points of branched alkanes with the same molecular formula.
  - \*d. a and c
    - e. b and c

### **Conformations of Alkanes**

- **2.23.** The most stable conformation of propane is:
  - \*a. staggered
- b. chair
- c. planar
- d. eclipsed
- e. boat

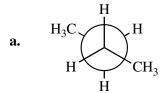

- **2.24** The least stable conformation of propane is:
  - a. staggered
- b. chair
- c. planar
- \*d. eclipsed
- e. boat
- **2.25.** The preferred conformation of butane is given by which of the following Newman projection formulas?

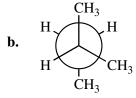


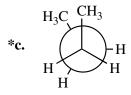
$$H_3C$$
 $H$ 
 $CH_3$ 

b.

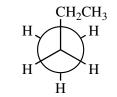
$$H$$
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 





d.




Δ.


**2.26.** The least stable conformation of butane is given by which of the following Newman projections?







**d.**  $H \xrightarrow{CH_3} CH_3$ 



# **Conformations of Cycloalkanes**

- **2.27.** The preferred conformation of *cis*-3-*tert*-butyl-1-methylcyclohexane is the one in which:
  - **a.** the *t*-butyl group is axial and the methyl group is equatorial
  - **b.** both groups are axial
  - \*c. both groups are equatorial
  - **d.** the methyl group is axial and the t-butyl group is equatorial
  - e. molecule exists in a boat conformation
- **2.28.** The bond angle of a normal, tetrahedral,  $sp^3$  hybridized carbon is 109.5°. What is the C–C–C bond angle of cyclopropane?
  - **\*a.** 60°
- **b.** 90°
- **c.** 109.5°
- **d.** 120°
- **e.** 180°
- **2.29.** For the most stable conformation of *trans*-1,2-dimethylcyclohexane:
  - a. both methyls will occupy the axial position
  - \*b. both methyls will occupy the equatorial position
  - c. one methyl will occupy the axial position and the other an equatorial position
  - **d.** more than one answer is correct
- **2.30.** Which of the following pairs are examples of conformational isomerism?
  - \*a. chair and boat forms of cyclohexane
  - **b.** 1-iodopropane and 2-iodopropane
  - **c.** sec-butyl chloride and butyl iodide
  - **d.** *cis* and *trans*-1,2-dimethylcyclohexane
  - e. all of these

#### 2.31. Consider this chair conformation:

$$H_3C$$
 $H$ 
 $H$ 
 $Br$ 

When the ring flips,

- a. the bromine becomes axial and the methyls become equatorial.
- **b.** all three substituents become equatorial.
- \*c. the bromine becomes equatorial and the methyls become axial.
- **d.** the ring opens up.
- e. one methyl becomes axial, one becomes equatorial, and the bromine becomes equatorial.

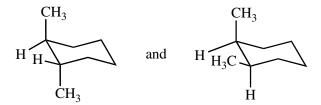
#### **2.32.** Consider this chair conformation:

$$Cl$$
 $H$ 
 $H$ 
 $H$ 

- \*a. The methyl and bromine are *cis* and the chlorine and bromine are *cis*.
- **b.** The methyl and bromine are *trans* and the chlorine and bromine are *cis*.
- **c.** The methyl and chlorine are *trans* and the methyl and bromine are *cis*.
- **d.** The methyl and chlorine are *trans* and the methyl and bromine are *trans*.
- **e.** The methyl and chlorine are *trans* and the bromine and chlorine are *cis*.

| <b>2.33.</b> Cycloalkanes with | or more carbons in the ring are nonplanar |
|--------------------------------|-------------------------------------------|
|--------------------------------|-------------------------------------------|

- **a.** 2
- **b.** 3 **\*c.** 4 **d.** 5

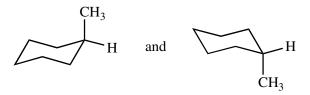

#### Isomerism

#### 2.34. 1-Bromopropane and 2-bromopropane are

- \*a. constitutional isomers.
- e. stereoisomers.

- a. constitutional isomers.
  b. homologs.
  d. conformational isomers.

### **2.35.** The compounds represented by the structures

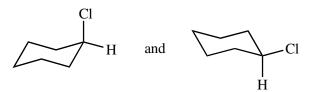



are

- **a.** structural isomers.
- **b.** identical.
- \*c. cis-trans isomers.

- **d.** conformers.
- e. constitutional isomers.

### **2.36.** The compounds represented by the structures

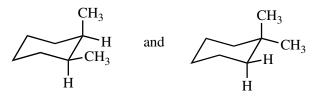



are

- **a.** structural isomers.
- \*b. identical.
- **c.** *cis-trans* isomers.

- **d.** conformers.
- e. constitutional isomers.

### **2.37.** The compounds represented by the structures




are

- **a.** structural isomers.
- **b.** identical.
- c. cis-trans isomers.

- \*d. conformers.
- e. constitutional isomers.

### **2.38.** The compounds represented by the structures



are

- \*a. structural isomers.
- **b.** identical.
- c. cis-trans isomers.

- **d.** conformers.
- e. stereoisomers.

# **Reactions of Alkanes**

| 2.39. | in the chlorination of methane, the propagation steps involve forming: |                    |                        |                      |                      |      |  |  |  |
|-------|------------------------------------------------------------------------|--------------------|------------------------|----------------------|----------------------|------|--|--|--|
|       | <ul><li>a. H radic</li><li>d. a, b, an</li></ul>                       |                    | <b>b.</b> methyl radio | cals c.              | chlorine radicals    |      |  |  |  |
| 2.40. | How many mo                                                            | onobromo produc    | ets can be obtaine     | ed from the bromin   | nation of cyclopenta | ane? |  |  |  |
|       | * <b>a.</b> 1                                                          | <b>b.</b> 2        | <b>c.</b> 3            | <b>d.</b> 4          | <b>e.</b> 5          |      |  |  |  |
| 2.41. | How many iso                                                           |                    | oducts can be ob       | otained from the cl  | nlorination of       |      |  |  |  |
|       | <b>a.</b> 1                                                            | <b>b.</b> 2        | *c. 3                  | <b>d.</b> 4          | <b>e.</b> 5          |      |  |  |  |
| 2.42. | The number of methylcyclope                                            |                    | romination prod        | ucts, including cis- | trans isomers, of    |      |  |  |  |
|       | <b>a.</b> 2                                                            | <b>b.</b> 3        | <b>c.</b> 4            | <b>d.</b> 5          | * <b>e.</b> 6        |      |  |  |  |
| 2.43. | The nu                                                                 | umber of possible  | dibromination p        | roducts of 2-meth    | ylpropane is         |      |  |  |  |
|       | <b>a.</b> 2                                                            | <b>*b.</b> 3       | <b>c.</b> 4            | <b>d.</b> 5          | <b>e.</b>            |      |  |  |  |
| 2.44. | The number of                                                          | of possible dichlo | rination products      | of propane is        |                      |      |  |  |  |
|       | <b>a.</b> 2                                                            | <b>b.</b> 3        | *c. 4                  | <b>d.</b> 5          | <b>e.</b> 6          |      |  |  |  |
|       |                                                                        |                    |                        |                      |                      |      |  |  |  |

# **Chapter 3 Alkenes and Alkynes**

# Alkenes and Alkynes: Nomenclature and Structure

- 3.1. Which of the following dienes can be classified as conjugated?
  - a. CH<sub>3</sub>CH=C=CH<sub>2</sub>
- \***b.** CH<sub>3</sub>CH=CHCH=CH<sub>2</sub>
- c. CH<sub>2</sub>=CHCH<sub>2</sub>CH=CH<sub>2</sub>
- **d.** CH<sub>3</sub>CH=CHCH<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub>
- e.  $CH_2=C=CH_2$
- Which of the following molecular formulas could not represent an alkene? 3.2.
  - **a.**  $C_5H_{10}$

- **b.**  $C_7H_{14}$  **c.**  $C_{10}H_{20}$  \***d.**  $C_{27}H_{56}$  **e.**  $C_{31}H_{62}$

3.3. What is the correct name for the following molecule?

$$\frown$$
 CH<sub>2</sub>CH<sub>3</sub>

- **a.** 1-ethylcyclohexene
- **b.** 2-ethylcyclohexene
- \*c. 3-ethylcyclohexene

- **d.** cyclohexylethane
- e. 1-ethyl-3-cyclohexene
- 3.4. Which of the following compounds can exhibit *cis/trans* isomerism?
  - **a.** 1-pentene
- \*b. 2-pentene
- c. 2-methyl-2-pentene

- **d.** 3-methyl-1-pentene
- e. 1-hexene
- 3.5. The correct IUPAC name for the following molecule is:

$$C = C$$
 $C = C$ 
 $C =$ 

- \*a. trans-2,3-dichloro-5-methyl-2-hexene
- **b.** *trans*-2,3-dichloro-5-methyl-3-hexene
- c. cis-2,3-dichloro-5-methyl-3-hexene
- **d.** *trans*-4,5-dichloro-2-methyl-4-hexene
- e. cis-4,5-dichloro-2-methyl-4-hexene
- 3.6. What is the correct structure for 2,3-dimethyl-2-pentene?

b. 
$$CH_2$$
=CCHCH<sub>2</sub>CH<sub>3</sub> c.  $CH_3$ CH<sub>3</sub>  $CH_3$   $CH_3$   $CH_3$ 

\*d. 
$$CH_3$$
  $CH_3$   $CH_3$ 

#### 3.7. The correct structure for allyl bromide is:

- $CH_2 = CHCH_2Br$ \*a.
- **b.**  $CH_2 = CHBr$
- c. BrCH=CHBr

- d.
- BrCH=CHCH<sub>3</sub> e. CH<sub>2</sub>=CHCHBr<sub>2</sub>

#### 3.8. Which of the following molecules is 4-methyl-2-hexyne?

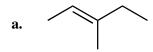
\*a.  $CH_3C \equiv CCHCH_2CH_3$ 

**b.**  $CH_3CH_2C \equiv CCH_2CH_3$ 

- $CH_3CHCH_2C \equiv CCH_3$ CH<sub>3</sub>
- **d.**  $CH_3C \equiv CCH_2CHCH_3$

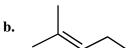
#### 3.9. The correct name of the molecule below is:

$$\begin{array}{c} HC = CCH_2CH_2CHCH_2CH = CH_2 \\ \ CH_3 \end{array}$$


- **a.** 5-methyl-7-octen-1-yne
- **\*b.** 4-methyl-1-octen-7-yne
- **c.** 4-methyl-1-octyn-7-ene
- **d.** 5-methyl-1-octen-7-yne
- e. none of these is correct
- **3.10.** The multiple bonds in the following compounds are conjugated:

1. 
$$CH_2 = C = CH_2$$

2. 
$$CH_{2} = C - C = CH_{2}$$
  
 $CH_{3}$ 


- 5.  $CH_3-C\equiv C-CH=CH_2$
- $CH_2 = CH CH = O$
- 6.
- \*a. 2, 3, and 5 b. 4 and 6
  - **c.** only 1
- **d.** 2 and 3
- **e.** 2 and 5

#### 3.11. The structure of (Z)-3-methyl-2-pentene is



\*c.

#### 3.12. The structure of (E)-3-methyl-2-pentene is



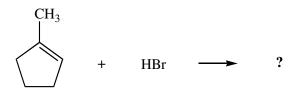
#### 3.13. The correct name for

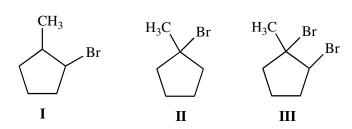
$$CH_3$$
  $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_4$   $CH_5$   $CH_5$   $CH_5$   $CH_6$   $CH_7$   $CH_8$   $CH_8$ 

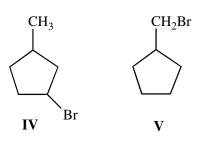
is

- **a.** 2-methyl-4-isopropyl-3-hexene.
- \*b. 3-ethyl-2,5-dimethyl-3-hexene.
- **c.** 2,5-dimethyl-4-ethyl-3-hexene.
- **d.** 1-ethyl-1,2-diisopropylethene.
- **e.** 1,2-diisopropyl-1-butene.

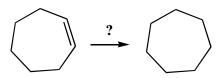
- **3.14.** The double bond in ethene is made up of
  - **a.** a pi bond and a sigma bond formed by lateral overlap of two p orbitals.
  - **b.** a sigma bond formed by overlap of two s orbitals and a pi bond formed by lateral overlap of two p orbitals.
  - **c.** a pi bond formed by end-on overlap of two  $sp^2$  orbitals and a sigma bond formed by overlap of two s orbitals.
  - \*d. a sigma bond formed by end-on overlap of two  $sp^2$  orbitals and a pi bond formed by lateral overlap of two p orbitals.
  - **e.** a pi bond formed by lateral overlap of two  $sp^2$  orbitals and a sigma bond formed by end-on overlap of two  $sp^2$  orbitals.
- **3.15.** The triple bond in ethyne is made up of
  - **a.** two pi bonds and a sigma bond, each formed by a lateral overlap of two p orbitals.
  - **b.** a sigma bond formed by overlap of two s orbitals and two pi bonds, each formed by lateral overlap of two p orbitals.
  - **c.** a sigma bond formed by end-on overlap of two  $sp^2$  orbitals and a pi bond formed by lateral overlap of two p orbitals.
  - \*d. two pi bonds, each formed by lateral overlap of two p orbitals, and a sigma bond formed by end-on overlap of two sp orbitals.
  - **e.** two pi bonds, each formed by end-on overlap of two *p* orbitals, and a sigma bond formed by lateral overlap of two *sp* orbitals.


### **Properties of Alkenes and Alkynes**


- **3.16.** Which of the following statements is FALSE relative to alkenes?
  - **a.** the C of the carbon-carbon double bond is  $sp^2$  hybridized
  - **b.** the bond angles are approximately 120° around the carbon-carbon double bond
  - **c.** there is the possibility of *cis/trans* isomerism
  - \*d. they are less reactive than alkanes
  - **e.** the bond length of the carbon-carbon double bond is shorter than that of the carbon-carbon single bond
- **3.17.** Which of the following hydrocarbons will be the most acidic?
  - a. pentane b. ethene \*c. acetylene
  - **d.** isobutane **e.** propylene
- **3.18.** Which of the following statements are true about alkynes?
  - **a.** they are more acidic than other hydrocarbons
  - **b.** the bond angle around the carbon-carbon triple bond is  $180^{\circ}$
  - c. the carbon-carbon triple bond is shorter than the carbon-carbon double bond
  - \*d. all of the above are true
    - e. none of the above are true
- **3.19.** What is the percent s character in an  $sp^2$  hybrid orbital?
  - **a.** 25% **\*b.** 33% **c.** 50% **d.** 67% **e.** 75%


- **3.20.** What is the percent s character in an sp hybrid orbital?
  - **a.** 25%
- **b.** 33%
- \*c. 50%
- **d.** 67%
- **e.** 75%

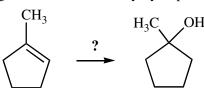
### **Reactions of Alkenes**


**3.21.** What would be the *major* product of the following reaction?








- a. I
- **\*b.** II
- c. III
- d. IV
- e. V
- **3.22.** Select the necessary reagent(s) to convert cycloheptene to cycloheptane.



- \*a. H<sub>2</sub> and Ni
- **b.** H<sub>2</sub>O

 $\mathbf{c}$ .  $H_2SO_4$  and heat

- **d.** Zn and H<sup>+</sup>
- e. KOH in alcohol and heat
- **3.23.** Select the necessary reagents to convert methylcyclopentene to 1-methylcyclopentanol.



- \*a. H<sub>2</sub>O and H<sub>2</sub>SO<sub>4</sub>
- **b.**  $Zn, H_2O$
- **c.** BH<sub>3</sub>, then  $H_2O_2$  and  $\overline{\phantom{0}}OH$

- **d.**  $O_3$ , then Zn,  $H^+$
- e. KOH in alcohol and heat

# **3.24.** What is the product for the reaction below?

$$CH_3$$
  
 $CH_3CH_2C = CH_2 + HBr \longrightarrow ?$ 

- a. CH<sub>3</sub> CH<sub>3</sub>CHCH<sub>2</sub>CH<sub>2</sub>Br
- b. CH<sub>3</sub>CHCHCH<sub>3</sub>
- c. CH<sub>3</sub>CHCH=CHBr

- \***d.** CH<sub>3</sub> CH<sub>3</sub> \***d.** CH<sub>3</sub>CH<sub>2</sub>CCH<sub>3</sub> | Br
- e. none of these

### **3.25.** What is the product for the reaction below?

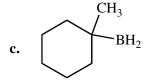
$$\textbf{a.} \qquad \overbrace{ \qquad \qquad }^{CH_2CH_3}_{Br}$$

\*b. 
$$CH_2CH_3$$
Br

**3.26.** Upon ozonolysis and treatment with Zn in water, compound A yielded two moles of formaldehyde, HCHO, and 1 mole of the following molecule:

What is the structure of A?

**3.27.** What is observed when water, in the presence of sulfuric acid, is added to 2-methyl-2-pentene?


- **3.28.** The products obtained by the acid-catalyzed hydration of methylcyclopentene and methylenecyclopentane are
  - \*a. identical.
- **b.** regioisomers.
- **c.** *cis-trans* isomers.

- **d.** constitutional isomers.
- e. conformers.
- **3.29.** The product of the reaction sequence

$$CH_3$$
  $BH_3$   $H_2O_2$   $OH$ 

is

 $\mathbf{b.} \qquad \begin{array}{c} \text{CH}_3 \\ \text{OH} \end{array}$ 



$$\mathbf{d.} \qquad \qquad \mathbf{CH_2OH}$$

e. none of the above

**3.30.** The product of the reaction

$$H_3C$$
  $H$   $+$   $HC1$   $\longrightarrow$   $H_3C$   $CH_2CH_3$ 

is

b. Cl Cl | | | | |  $CHCH_2CH_3$ 

c. 
$$(CH_3)_2CH$$
— $CHCH_2CH_3$ 

d. (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>CHCH<sub>3</sub>

e. 
$$H_3C$$
  $C=C$   $H_3C$   $CH_2CH_2C$ 

**3.31.** The products of the following reaction sequence

$$C = C$$
 $C + C$ 
 $C +$ 

are

**a.** 2 
$$H_3C$$
  $C=0$   $H_3C$ 

\***b.** 
$$H_{3}C$$
  $C=O + O=C$   $CH_{2}CH_{3}$ 

e. 2 
$$O=C$$
 $CH_2CH_3$ 

# **Reactions of Conjugated Dienes**

- **3.32.** What product(s) will be observed by the addition of one molar equivalent of  $Br_2$  to 1,3-cyclohexadiene?
  - **a.** 1,2-dibromocyclohexene
- **b.** 3,4-dibromocyclohexene
- **c.** 1,3-dibromocyclohexene
- **d.** 3,6-dibromocyclohexene

\*e. both b and d

**3.33.** The Diels-Alder reaction is very important in the synthesis of six-membered rings. What six-membered ring is produced with the following reaction?

$$CH_3CH=CHCH=CHCH_3 + H_2C=CHCCH_3 \longrightarrow ?$$

a. 
$$CH_3$$
  $CH_2CHO$   $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$ 

\*d. 
$$CH_3$$
  $CCH_3$   $CCH_3$   $CCH_3$   $CCH_3$   $CCH_3$   $CCH_3$   $CCH_3$ 

- **3.34.** The product of addition of two moles of HBr to 1,4-pentadiene is
  - **a.** 2,2-dibromopentane.
- \*b. 2,4-dibromopentane.
- c. 1,5-dibromopentane.
- **d.** 3,3-dibromopentane.
- e. 1,4-dibromopentane.
- **3.35.** The products obtained by adding 1 mole of HBr to 2,4-hexadiene are
  - **a.** 4-bromo-2-hexene and 5-bromo-2-hexene.
  - **b.** 3-bromo-2-hexene and 4-bromo-2-hexene.
  - **c.** 4-bromo-2-hexene and 2-bromo-4-hexene.
  - **d.** 2-bromo-3-hexene and 3-bromo-2-hexene.
  - \*e. 2-bromo-3-hexene and 4-bromo-2-hexene.

# **Reactions of Alkynes**

**3.36.** The product of the reaction

$$CH_3CH_2C \equiv CH + 2 Br_2 \longrightarrow$$

is

a. 
$$\begin{array}{c} Br \\ C = C \\ CH_3CH_2 \\ H \end{array}$$

**b.** CH<sub>3</sub>CH<sub>2</sub>CBr<sub>2</sub>CH<sub>3</sub>

**d.** CH<sub>3</sub>CH<sub>2</sub>

\*c. CH<sub>3</sub>CH<sub>2</sub>CBr<sub>2</sub>CHBr<sub>2</sub>

e. CH<sub>3</sub>CH<sub>2</sub>CHBrCH<sub>2</sub>Br

- **3.37.** What type of compound is prepared by adding water to acetylene (C<sub>2</sub>H<sub>2</sub>) in the presence of sulfuric acid and mercuric sulfate?
  - \*a. aldehyde
- **b.** ketone

c. carboxylic acid

d. ester

- e. ether
- **3.38.** The product of the reaction

$$CH_3CH_2C \equiv CH$$

$$\frac{NaNH_2}{\text{in liquid NH}_3}$$

is

a.  $CH_3CH_2C = CH_2$ | Na

**\*b.** CH<sub>3</sub>CH<sub>2</sub>C≡C: Na<sup>+</sup>

c.  $CH_3CH_2C = CH_2$  $NH_2$  **d.**  $CH_3CH_2CH = CHNH_2$ 

e. CH<sub>3</sub>CH<sub>2</sub>C=CHNH<sub>2</sub>

### **Reactions and Nomenclature**

**3.39.** What is the name of the product formed from the following reaction?



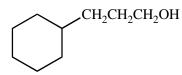
- a. bromocyclopentane
- **b.** 1,1-dibromocyclopentane
- \*c. 1,2-dibromocyclopentane
- **d.** 2,2-dibromocyclopentane
- e. 1,1-dibromocyclopentene
- **3.40.** Addition of H<sub>2</sub> to 2-butyne in the presence of the Lindlar's catalyst will produce:
  - a. butane

**b.** 1-butene

\*c. cis-2-butene

**d.** trans-2-butene

- e. isobutylene
- **3.41.** What alkene is required to make 3-methyl-1-butanol using the hydroboration-oxidation reaction?
  - **a.** 1-butene


**b.** 2-butene

\*c. 3-methyl-1-butene

**d.** 2-methyl-2-butene

e. 2-methyl-1-butene

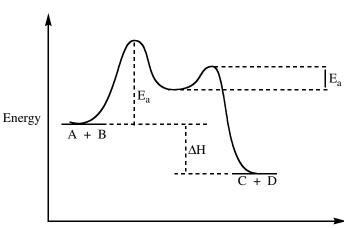
- a. propyl chloride
- **b.** propyl bromide
- c. 1-bromo-2-chloropropane
- \*d. 2-bromo-2-chloropropane
- e. 2,2-dibromopropane
- **3.43.** Which of the following alkenes is needed to prepare 3-cyclohexyl-1-propanol via a hydroboration-oxidation reaction?



3-cyclohexyl-1-propanol

- a. cyclohexene
- \*c. allyl cyclohexane
- e. 1- octene

- **b.** vinyl cyclohexane
- **d.** propyl cyclohexene
- **3.44.** Upon ozonolysis which alkene will give only acetone,  $(CH_3)_2C=O$ ?
  - \*a. 2,3-dimethyl-2-butene


  - **c.** 3-hexene
  - e. 2-methyl-3-hexene

- **b.** 2,2-dimethyl-2-butene
- **d.** 2-methyl-2-pentene
- **3.45.** What is the name of the alkene produced by treating 2-butyne with 1 mole of Br<sub>2</sub>?
  - **a.** 1,2-dibromo-1-butene
  - **b.** 2,3-dibromo-1-butene
  - \*c. trans-2,3-dibromo-2-butene
  - **d.** 2,3-dibromo-1-butene
  - e. cis-1.4-dibromo-2-butene

### **Reaction Equilibrium and Reaction Rates**

**3.46.** Examine the following reaction energy diagram for the reaction





Reaction Coordinate

Which of the following statements are true?

- 1. The reaction is exothermic.
- 2. The reaction occurs in one step.
- 3. The first step is the rate-determining step.
- 4. The reaction is endothermic.
- 5. If the reaction is heated, the reaction rate will increase.
- **a.** 1, 2, and 5
- **\*b.** 1, 3, and 5
- **c.** 2 and 4

- **d.** 3, 4, and 5
- **e.** 3 and 4
- **3.47.** Which of the following statements about chemical reactions are true?
  - 1. Exothermic reactions occur at a rapid rate.
  - 2. The products of exothermic reactions are lower in energy than the reactants.
  - 3. Exothermic reactions give off heat.
  - 4. The products of endothermic reactions are lower in energy than the reactants.
  - **a.** 3

- **b.** 1, 2, and 3
- **c.** 1, 3, and 4

\***d.** 2 and 3

**e.** 2

# **Reaction Mechanisms**

- **3.48.** Markovnikov addition of HCl to propene involves:
  - **a.** initial attack by the chloride ion
- **b.** initial attack by the chlorine atom
- **c.** isomerization of 1-chloropropane
- **d.** formation of a propyl cation
- \*e. formation of an isopropyl cation
- **3.49.** What type of carbocation will form from the addition of a H<sup>+</sup> to 2-methylpropene?
  - a.  $H_2C^+$
- **b.** 1°
- **c.** 2
- \***d.** 3°
- e. allyl

- Cyclohexene is treated with cold dilute KMnO<sub>4</sub>. What is the spatial arrangement of the hydroxyls on the resulting cyclohexane ring?
  - \*a. cis

**b.** trans

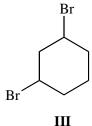
c. eclipsed

- **d.** both axial
- e. both equatorial
- **3.51.** The first step in the free radical mechanism for the preparation of polyethylene is:
  - **a.** formation of a stable carbocation
  - **b.** formation of a stable carbanion
  - \*c. heating an organic peroxide to break the O-O bond
  - **d.** decoupling of the free radicals
  - e. propagation of the free radicals
- **3.52.** Polyethylene is usually produced by
  - **a.** an ionic electrophilic addition reaction. **b.** heating ethylene to 1000°C.
  - **c.** cationic polymerization.
- \*d. a free-radical chain reaction.

e. epoxidation.

### **Miscellaneous**

- **3.53.** Which of the following reagents can be used to distinguish an alkene from an alkane?
  - $\mathbf{a}$ . Zn,  $\mathbf{H}^+$
- **b.** H<sub>2</sub>O
- c.  $Cl_2$ , hv
- \***d.**  $Br_2$ ,  $CCl_4$  **e.**  $O_2$ , heat
- 3.54. What is/are the final product(s) in the following multistep synthesis?






Ι

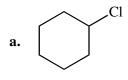


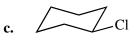




a. I

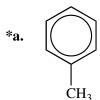
c. III


\*d. I and II

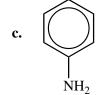

e. all are produced

# **Chapter 4 Aromatic Compounds**

# **Nomenclature and Structural Formulas of Aromatic Compounds**


4.1. The structure of chlorobenzene is correctly represented by:






$$\mathbf{d.} \quad \bigcirc^{\mathrm{CH_2Cl}}$$

4.2. Which of the following structures accurately represents toluene?

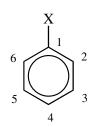






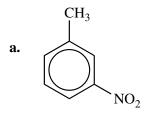
d. 
$$CO_2H$$

4.3. The name of the following molecule is:


$$CH = CH_2$$

- a. toluene
- **b.** ethylbenzene **c.** cumene
- \*d. styrene
- e. anisole
- 4.4. What dibromobenzene can form only one tribromobenzene?
  - a. o-dibromobenzene
- **b.** *m*-dibromobenzene
- \*c. p-dibromobenzene

d. cumene


e. styrene

#### 4.5. Using the following monosubstituted benzene, which position would be ortho to X?



- **a.** 1
- **\*b.** 2
- **c.** 3
- **d.** 4
- **e.** 5

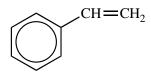
#### 4.6. Which of the following molecules is m-nitrophenol?





\*d. 
$$OH$$
 $NO_2$ 

 $NO_2$ 


#### 4.7. What is the name of the following molecule?

### PhCH<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub>

- a. styrene
- \*b. 4-phenyl-1-butene
- c. 1-phenyl-3-butene

- **d.** 3-benzyl-1-propene
- e. allylbenzene

#### 4.8. Which name(s) of the following molecule is/are incorrect?

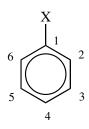


a. styrene

- **b.** vinylbenzene
- \*c. ethylbenzene

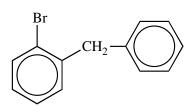
- d. phenylethene
- e. a and b
- 4.9. How many dinitrobenzoic acids are possible?
  - **a.** 4
- **b.** 5
- \*c. 6
- **d.** 7
- **e.** 8

**4.10.** Which of the following names represents more than one compound?

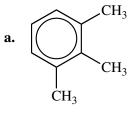

- \*a. dichlorobenzene
- **b.** 2-bromophenol
- **c.** *o*-nitrobenzaldehyde
- **d.** 2,4,6-trinitrotoluene

e. cumene

**4.11.** How many different trisubstituted products are possible from the nitration of m-xylene?


- **a.** 1
- **b.** 2
- \*c. 3
- **d.** 4
- **e.** 5

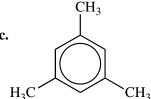
**4.12.** Which position would be meta to X?

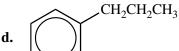



- **a.** 1
- **b.** 2
- \*c. 3
- **d.** 4
- **e.** 6

**4.13.** What is the correct name for the following molecule?




- **a.** *o*-bromobenzyl
- c. 2-bromodiphenylpropane
- \*e. o-benzylbromobenzene
- **b.** biphenyl bromide
- d. bromobenzylbenzene
- **4.14.** Which alkylbenzene,  $C_9H_{12}$ , when nitrated can yield only one mononitro product?




h

$$\begin{array}{c|c} & CH_3 \\ \hline \\ H_3C & CH_3 \end{array}$$

\*c.





e.

#### 4.15. The correct name for

is

- **a.** 2-chloro-4-bromotoluene.
- **b.** *o*-chloro-*p*-bromotoluene.
- **c.** 1-bromo-3-chloro-4-methylbenzene. \***d.** 4-bromo-2-chlorotoluene.
- **e.** *m*-chlorobromotoluene.

#### 4.16. The structural formula for *m*-chlorobenzoic acid is

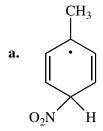
- COOH

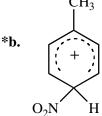
COOH

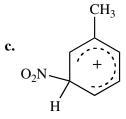
- COOH

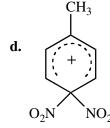
# **Aromaticity, Resonance, and Properties of Aromatic Compounds**

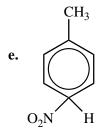
- 4.17. Which of the following statements about benzene is FALSE?
  - a. the molecule is planar and each carbon is at a corner of regular hexagon
  - **b.** there are two resonance structures of equivalent energy
  - c. the bond angles are all 120° and the bond lengths are all 1.39Å
  - \*d. the typical mechanism by which reactions occur is by addition
  - e. each carbon in the benzene ring is  $sp^2$  hybridized
- **4.18.** Which statement about benzene is TRUE?
  - **a.** All six hydrogens in benzene are chemically equivalent.
  - **b.** Benzene decolorizes bromine solutions.
  - c. The molecule is planar, and each carbon is at the corner of a regular hexagon.
  - \*d. Both a and c are true.
  - e. Both b and c are true.


# **Mechanism of Electrophilic Aromatic Substitution**

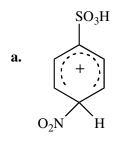

- **4.19.** Which of the following is NOT an electrophile in an electrophilic aromatic substitution reaction?
  - a.  $NO_2^+$

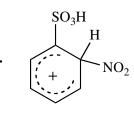

- **b.**  $Cl^{\delta_+}$ -- $^{\delta_-}$ Cl--FeCl<sub>3</sub>
- \*c. CH<sub>3</sub>OH

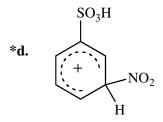

 $\mathbf{d}$ .  $SO_3$ 


- e. all are
- **4.20.** In the mechanism for the nitration of benzene, what is the function of  $H_2SO_4$ ?
  - a. to act solely as a solvent
- \*b. to donate a proton to HNO<sub>3</sub>
- c. to accept a proton from HNO<sub>3</sub>
- **d.** to generate heat for reaction to occur
- e. to protonate the benzene ring
- **4.21.** The predominant intermediate in electrophilic nitration of toluene is





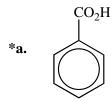



# **4.22.** The predominant intermediate in the nitration of benzenesulfonic acid is

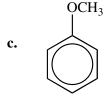


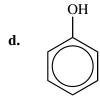





e. 
$$NO_2$$

# **Directing Groups and Ring Activation**


**4.23.** Which of the following groups is a *meta* director?


$$\mathbf{c}$$
.  $-\mathrm{OCH}_3$ 

**4.24.** In electrophilic aromatic substitution reactions, which of the following molecules are considered to be less reactive than benzene?







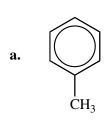


**4.25.** Which of the following groups are *ortho*, *para*-directing?

**a.** 
$$-CO_2CH_3$$

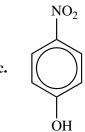
**b.** 
$$-CONH_2$$

$$\mathbf{d.} \quad \overset{+}{\longrightarrow} \text{NH}(\text{CH}_3)_2$$


**4.26.** Among the following groups, which ones are *meta*-directing?

$$2. -NO_2$$

$$3. -SO_3H$$


$$4. - CH_3$$

**4.27.** Which of the following molecules is the *most* reactive toward electrophilic aromatic substitution?

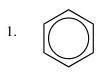


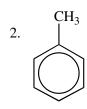


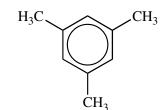
 $CO_2H$ 

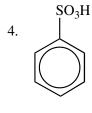








**4.28.** Which group is both *ortho*, *para*-directing and ring-deactivating?


$$\mathbf{c}$$
.  $-NO_2$ 


3.

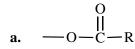
**4.29.** The relative rates of nitration of

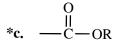









are


**a.** 
$$1 > 2 > 3 > 4$$

**b.** 
$$4 > 2 > 1 > 3$$

\*e. 
$$3 > 2 > 1 > 4$$

4.30. The only group among the following that is *m*-directing is





— $C(CH_3)_3$  e. — $N(CH_3)_2$ 

**4.31.** Among the following groups, which ones are o,p-directing?

1. — OCH<sub>3</sub> 2. — NO<sub>2</sub> 3. — Br 4. — CN 5. — CH<sub>2</sub>CH<sub>3</sub>

\*a. 1, 3, and 5 b. 1 and 5 c. 2 and 4 d. 2, 3, and 4 e. 1 and 3

# Reactions of Benzene and Substituted Benzenes

Which electrophile is used to make acetophenone from benzene?

 $^+$  CH<sub>3</sub> \***b.** CH<sub>3</sub>CO **c.** SO<sub>3</sub> **d.** NO<sub>2</sub>  $^+$  **e.** CH<sub>3</sub>CH<sub>2</sub>

The name of the product of the following reaction is: 4.33.



 $HNO_3$   $\xrightarrow{H_2SO_4}$ 

a. benzenesulfonic acid

**b.** aniline

c. benzoic acid

\*d. nitrobenzene

e. anisole

**4.34.** If p-nitrophenol is treated with chlorine in the presence of AlCl<sub>3</sub>, the only trisubstituted product observed is:

\*a. 2-chloro-4-nitrophenol

**b.** 3-chloro-4-nitrophenol

**c.** 3-chloro-5-nitrophenol

**d.** 4-chloro-2-nitrophenol

**e.** 4-chloro-3-nitrophenol

**4.35.** What is the name of the major product from the following sequence of reactions?



a. aniline

**b.** anisole

c. benzoic acid

\*d. phenol

e. toluene

**4.36.** The expected product from the following reaction is:



a.  $CH_3$   $CH_2CH_3$ 

b. CH<sub>2</sub>CH<sub>3</sub>

 $CH_3$ 

\*c.  $CH_3$   $CH_2CH_3$ 

 $\mathbf{d.} \qquad \begin{array}{c} \mathrm{CH_2CH_3} \\ \\ \mathrm{CH_3} \end{array}$ 

CH<sub>2</sub>CH<sub>3</sub>
CH<sub>3</sub>

**4.37.** What is the final product of the following reaction sequence?

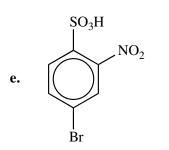
$$\begin{array}{c}
1) \text{ CH}_2 = \text{CH}_2, \text{ H}^+ \\
2) \text{ KMnO}_4, \quad \triangle
\end{array}$$

a.  $CH=CH_2$ 

OH | CHCH<sub>3</sub>

\*c. CO<sub>2</sub>H

 $\textbf{d.} \quad \bigcirc ^{CH_2CH_3}$ 


e. CH<sub>2</sub>CO<sub>2</sub>H

c.

**4.38.** The predominant product from sequential nitration and bromination of benzenesulfonic acid is

\*a. 
$$HO_3S$$
  $NO_2$ 

O<sub>2</sub>N SO<sub>3</sub>H



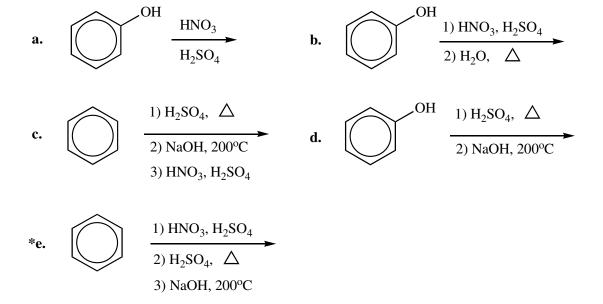
- $\mathbf{b.} \qquad \overbrace{\qquad \qquad }^{\mathrm{SO_3H}}_{\mathrm{NO_2}} \mathrm{Br}$ 
  - O<sub>2</sub>N HO<sub>3</sub>S Br

d.

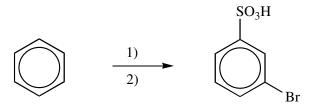
- **4.39.** The predominant product from the sequential bromination and nitration of benzene is:
  - a. Br
- $\mathbf{b.} \qquad \begin{array}{c} \mathsf{NO}_2 \\ \\ \end{array}$
- c.  $\frac{Br}{NO_2}$

- \*d.  $\bigcap_{NO_2}^{\operatorname{Br}}$
- e.  $\frac{Br}{NO_2}$

**4.40.** What is the product of the following reaction?


\*a. 
$$CH_3$$

$$*a. CH_3$$


$$CH_3$$

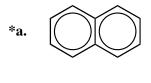
# **Electrophilic Aromatic Substitution in Synthesis**

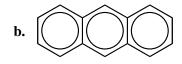
**4.41.** What is the best sequence of reactions to synthesize *m*-nitrophenol?

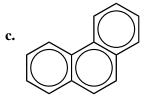


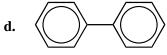
**4.42.** Which is the best reaction sequence to synthesize *m*-bromobenzenesulfonic acid from benzene?

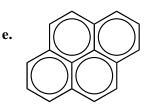



- **a.** 1) Br<sub>2</sub>, AlBr<sub>3</sub>, 2) H<sub>2</sub>SO<sub>4</sub>, SO<sub>3</sub>
- \***b.** 1) H<sub>2</sub>SO<sub>4</sub>, SO<sub>3</sub> 2) Br<sub>2</sub>, AlBr<sub>3</sub>
- c. 1) ethene, HF, 2) Br<sub>2</sub>, AlBr<sub>3</sub>
- **d.** 1) CH<sub>3</sub>Cl, AlCl<sub>3</sub>, 2) Br<sub>2</sub>, AlBr<sub>3</sub>
- e. 1) Br<sub>2</sub>, AlBr<sub>3</sub>, 2) CH<sub>3</sub>COCl, AlCl<sub>3</sub>
- **4.43.** Which is the best sequence of reagents to use in synthesizing 2-bromo-4-nitrotoluene from benzene:
  - a. Br<sub>2</sub>, FeBr<sub>3</sub>; then CH<sub>3</sub>Cl, AlCl<sub>3</sub>; then HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>
  - **b.** CH<sub>3</sub>Cl, AlCl<sub>3</sub>; then Br<sub>2</sub>, FeBr<sub>3</sub>; then HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>
  - \*c. CH<sub>3</sub>Cl, AlCl<sub>3</sub>; then HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>; then Br<sub>2</sub>, FeBr<sub>3</sub>
  - **d.** SO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>; then HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>; then Br<sub>2</sub>, FeBr<sub>3</sub>
  - e. HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>; then Br<sub>2</sub>, FeBr<sub>3</sub>; then CH<sub>3</sub>Cl, AlCl<sub>3</sub>
- **4.44.** Which is the best reaction sequence to synthesize *p*-bromobenzenesulfonic acid from benzene?

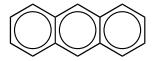




- \***a.** 1)  $Br_2$ ,  $AlBr_3$ , 2)  $H_2SO_4$ ,  $SO_3$ 
  - c. 1) CH<sub>3</sub>Cl, AlCl<sub>3</sub>, 2) Br<sub>2</sub>, AlBr<sub>3</sub>
  - e. 1) HBr, ethane, 2) H<sub>2</sub>SO<sub>4</sub>, SO<sub>3</sub>
- **b.** 1) H<sub>2</sub>SO<sub>4</sub>, SO<sub>3</sub>, 2) Br<sub>2</sub>, AlBr<sub>3</sub>
- **d.** 1) Br<sub>2</sub>, AlBr<sub>3</sub>, 2) CH<sub>3</sub>COCl, AlCl<sub>3</sub>


# **Polycyclic Aromatic Hydrocarbons**


**4.45.** A common polycyclic aromatic hydrocarbon is named naphthalene. What is the structure of naphthalene?

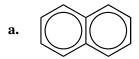


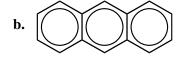


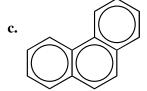








**4.46.** The number of possible mononitration products of anthracene





is:

- **a.** 1
- **b.** 2
- \*c. 3
- **d.** 4
- **e.** 5

**4.47.** The polycyclic aromatic hydrocarbon benzo[a]pyrene is a known carcinogen found in soot and tobacco smoke. What is its structure?







d.



\*e.

# **Chapter 5 Stereoisomerism**

# **Definitions**

| 5.1. | Which | of the | following | objects | is chiral? |
|------|-------|--------|-----------|---------|------------|
|------|-------|--------|-----------|---------|------------|

a. socks

**b.** pencil

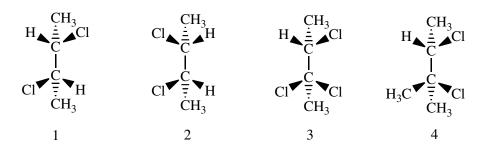
c. cross country skis

**d.** basketball

\*e. shoes

Chiral molecules that have nonsuperimposable mirror images are called: 5.2.

\*a. enantiomers


**b**. diastereomers

c. meso compounds

**d.** stereogenic

e. symmetrical

5.3. Which of the following molecules has a mirror plane of symmetry?



**a.** 1

**\*b.** 2

**c.** 3

**d.** 4

e. all of them

5.4. What is the process that separates enantiomers?

**a.** separation

**b.** decoupling

c. resetting

\*d. resolution

**e.** selective binding

5.5. A 50:50 mixture of enantiomers

**a.** is a *meso* form.

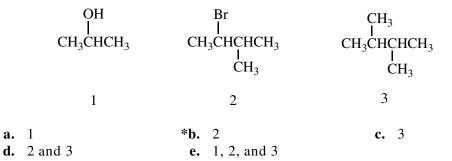
**b.** is a pair of diastereomers.

\*c. is a racemic mixture.

**d.** rotates plane polarized light.

e. is a pair of conformers.

**5.6.** The terms that best describe the isomeric relationship between staggered and eclipsed ethane are


**a.** configurational, achiral, diastereomers. **b.** conformational, chiral, enantiomers.

\*c. conformational, achiral, diastereomers. d. configurational, chiral, enantiomers.

e. conformational, achiral, enantiomers.

# **Stereogenic Centers**

5.7. Which of the molecules below has a stereogenic carbon atom?



**5.8.** How many stereogenic centers are present in the following molecule?

5.9. How many stereogenic centers are present in the following molecule?

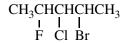
- **a.** 1 **\*b.** 2 **d.** 6 **e.** 8
- 5.10. How many chiral stereoisomers can be drawn for CH<sub>3</sub>CHClCHBrCH<sub>3</sub>? **b.** 2 \*d. 4 **a.** 1 **c.** 3 **e.** 8
- **5.11.** How many stereogenic carbons are in the following molecule?

$$H_3C$$
  $CH_3$  \*c. 2 d. 3 e. 4

- **5.12.** How many *stereoisomers* can be obtained from the monobromination of butane?
- **\*b.** 2 **c.** 3 **d.** 4 **e.** 5

**b.** 1

**a.** 0


- **5.13.** How many stereoisomers with the formula CH<sub>3</sub>CHICHICH<sub>3</sub> are possible?
  - **a.** 1
- **b.** 2
- \*c. 3
- **d.** 4
- **e.** 5

**5.14.** The number of stereogenic centers in progesterone is

progesterone (no stereochemistry shown)

- **a.** 2
- **b.** 3
- **c.** 4
- **d.** 5
- **\*e.** 6

**5.15.** The total number of possible stereoisomers of



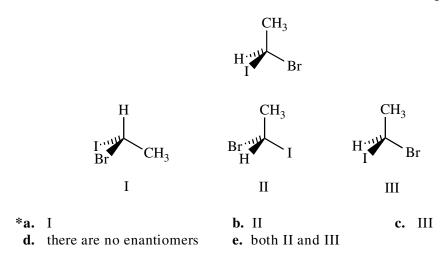
is

- **a.** 2
- **b.** 4
- **c.** 6
- \***d.** 8
- **e.** 0
- **5.16.** The total number of possible stereoisomers of 2-methyl-1-chlorocyclohexane is
  - **a.** 2
- **\*b.** 4
- **c.** 6
- **d.** 8
- **e.** 0

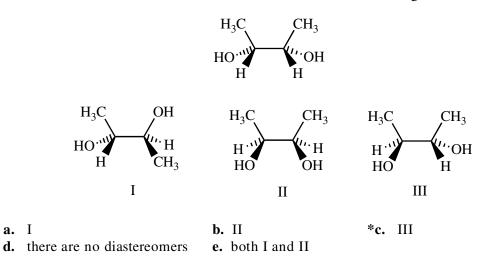
# **Optical Activity**

- **5.17.** An unknown sample is tested with a polarimeter for optical activity. The results of the test required no movement of the analyzer. What samples would give this result?
  - a. pure enantiomer
- **b.** *meso* compound
- c. racemic mixture

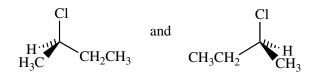
- \*d. both b and c
- e. none of these
- **5.18.** An unknown sample is tested with a polarimeter for optical activity. The results of the test require movement of the analyzer. What samples would give this result?
  - \*a. pure enantiomer
- **b.** meso compound
- c. racemic mixture


- d. both b and c
- e. none of these
- **5.19.** Which of the following statements about enantiomers is INCORRECT?
  - a. they cannot be differentiated by spectra
  - **b.** they have the same melting and boiling points
  - **c.** the mirror image of the *R* stereoisomer is the *S* stereoisomer
  - **d.** the specific rotation of each stereoisomer has the same magnitude
  - \*e. without exception the R stereoisomers will rotate light to the right

- **5.20.** The observed rotation for 100 mL of an aqueous solution containing 1 g of sucrose, placed in a 2-decimeter sample tube, is +1.33° at 25°C. What is the specific rotation of sucrose?
  - \***a.**  $+66.5^{\circ}$
- **b.**  $+266^{\circ}$
- **c.** +41.5
- **d.** +133°
- **e.** 108°


# **Relationships Between Stereoisomers**

**5.21.** Which of the following molecules are the same?


**5.22.** Which of the three molecules below is the enantiomer of the following molecule?



**5.23.** Which of the three molecules below is a diastereomer of the following molecule?



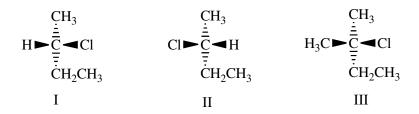
- **5.24.** Which of the following are achiral *conformers*?
  - \*a. staggered and eclipsed forms of ethane b. cis and trans-2-butene
  - **c.** meso and (2R,3R)-2,3-dibromobutane **d.** (R) and (S)-lactic acid
  - **e.** *E* and *Z*-2-pentene
- **5.25.** Which of the following would constitute a pair of enantiomers?
  - a. staggered and eclipsed forms of ethane
  - **b.** *cis* and *trans*-2-butene
  - c. meso- and (2R,3R)-2,3-dibromobutane
  - \*d. (2R,3R) and (2S,3S)-tartaric acid
    - e. none of these
- **5.26.** The terms that best describe the relationship between (2R,3R)-2,3-butanediol and (2S,3S)-2,3-butanediol are
  - a. configurational, achiral, diastereomers.
  - **b.** conformational, chiral, enantiomers.
  - c. conformational, achiral, diastereomers
  - \*d. configurational, chiral, enantiomers.
  - e. configurational, achiral, enantiomers.
- **5.27.** The terms that best describe the relationship between (2R,3S)-2-bromo-3-chlorobutane and (2R,3R)-2-bromo-3-chlorobutane are
  - **a.** configurational, achiral, diastereomers.
  - **b.** conformational, chiral, diastereomers.
  - c. configurational, achiral, enantiomers.
  - **d.** conformational, chiral, enantiomers.
  - \*e. configurational, chiral, diastereomers.
- **5.28.** Which of the following statements about the pair of molecules shown below is *not* true?

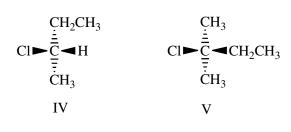


- **a.** They have the same boiling point.
- **b.** One rotates plane polarized light in the opposite direction from the other.
- **c.** They have the same density.
- \*d. One rotates plane polarized light a different number of degrees than the other.
- e. They are mirror images of each other.

#### The R-S and E-Z Conventions

- **5.29.** According to the *R-S* convention, which priority is correct for the following sets of groups?
  - **a.**  $NH_2 > Cl > CH_3 > H$


\***b.**  $Cl > NH_2 > CH_3 > H$ 

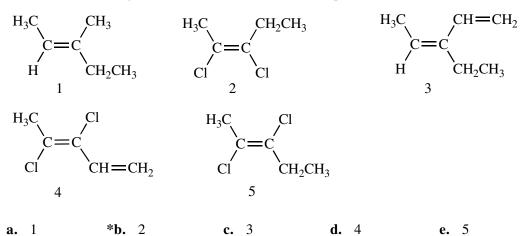

c.  $Cl > CH_3 > NH_2 > H$ 

**d.**  $H > Cl > CH_3 > NH_2$ 

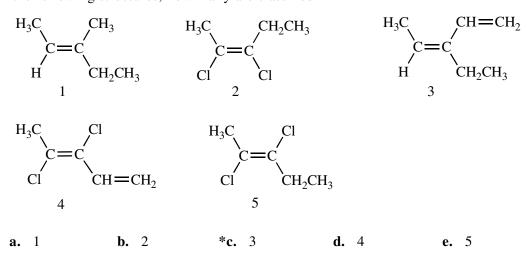
- **e.**  $CH_3 > NH_2 > Cl > H$
- Copyright © Houghton Mifflin Company. All rights reserved.

**5.30.** (*R*)-2-chlorobutane is correctly represented by which of the following:

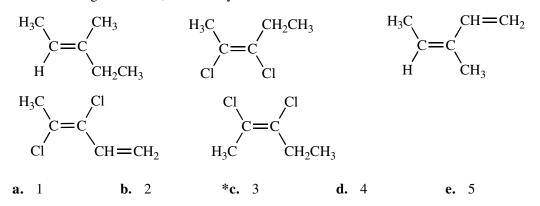





- **a.** I \***b.** II **c.** III **d.** IV **e.** V
- **5.31.** Which of the following groups has the highest priority for assigning *R-S* absolute configuration?
  - **a.**  $CH_2=CH-$  **b.**  $(CH_3)_2CH-$  \*c.  $(CH_3)_3C-$  **d.**  $CH_3CH_2-$  **e.**  $CH_3-$
- **5.32.** The correct IUPAC name for the following molecule is:


$$C = C$$
Br  $CH_2CHCH_3$ 
 $CH_3$ 

- \*a. (E)-2-bromo-3-chloro-5-methyl-2-hexene
- **b.** (*E*)-2-bromo-3-chloro-5-methyl-3-hexene
- **c.** (*Z*)-2-bromo-3-chloro-5-methyl-3-hexene
- **d.** (*Z*)-2-bromo-3-chloro-5-methyl-2-hexene
- **e.** (*Z*)-5-bromo-4-chloro-2-methyl-4-hexene


# **5.33.** Which of the following structures is (Z)-2,3-dichloro-2-pentene?



# **5.34.** Of the following structures, how many are classified "E"?



# **5.35.** Of the following structures, how many are classified "Z"?



5.36. Which of the following structures depicts (R)-3-ethyl-2,3-dimethylhexane?

a. 
$$CH_3CH_2 \blacktriangleright \overset{H}{\overset{\dot{=}}{\underbrace{C}}} \blacktriangleleft CH(CH_3)_2$$
  
 $\overset{\dot{=}}{\overset{\dot{=}}{\underbrace{CH_2CH_2CH_3}}}$ 

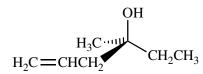
5.37. The priority order for R/S nomenclature is

**a.** 
$$-CH=CH_2 > -CH_3 > -CH_2CH_3$$

**b.** 
$$-\text{OH} > -\text{CH}_2\text{CH}_3 > -\text{CH} = \text{CH}_2 > -\text{CH}_3$$

\*c. 
$$-OH > -CH = CH_2 > -CH_2CH_3 > -CH_3$$

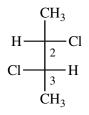
**d.** 
$$-CH_3 > -CH_2CH_3 > -CH_2CH_2 > -CH$$


e. 
$$-CH_2CH_3 > -CH_3 > -CH_2CH_2 > -OH$$

Which name describes the following structure? **5.38.** 

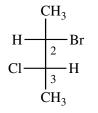
$$CH_3CH_2$$
 $CH=CH_2$ 

- \*a. (R)-3-methyl-1-penten-3-ol
- $\mathbf{c}$ . (R)-3-ethyl-1-buten-3-ol
- e. (S)-3-ethyl-1-buten-3-ol
- **b.** (S)-3-methyl-1-penten-3-ol
- **d.** (R)-3-methyl-1-pentyn-3-ol


**5.39.** Which name describes the following structure?



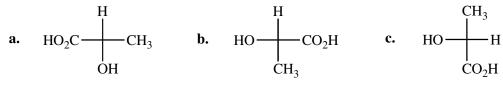
- **a.** (R)-4-methyl-1-hexen-4-ol
- $\mathbf{c}$ . (R)-4-ethyl-1-penten-3-ol
- **e.** (S)-4-methyl-1-hexyn-4-ol
- **b.** (*S*)-4-ethyl-1-penten-4-ol **b.** (S)-4-ethyl-1-penien-4-oi \***d.** (S)-4-methyl-1-hexen-4-ol


# **Fischer and Newman Projections**

What is correct name for the following structure?



- **a.** (R,S)-2,3-dichlorobutane
- \*c. (2S,3S)-2,3-dichlorobutane
- e. none of these


- **b.** (2R,3S)-2,3-dichlorobutane
- **d.** (2R,3R)-2,3-dichlorobutane
- **5.41.** What is the absolute configuration around C-2 and C-3?



- **a.** R, R **\*b.** S, S
  - **c.** R, S **d.** S, R
- e. E, Z
- 5.42. The absolute configuration around the stereogenic center of the molecule below is:

$$H \xrightarrow{CH_3} CH_2CH_2CH_3$$
 $CH_2CH_3$ 

- $\mathbf{a}$ . R
- \***b.** S
- **c.** *E*
- **d.** Z
- e. trans
- The Fischer projection formula for (S)-lactic acid (2-hydroxypropanoic acid) is



- d.  $H \longrightarrow CO_2H$  \*e.  $HO \longrightarrow H$

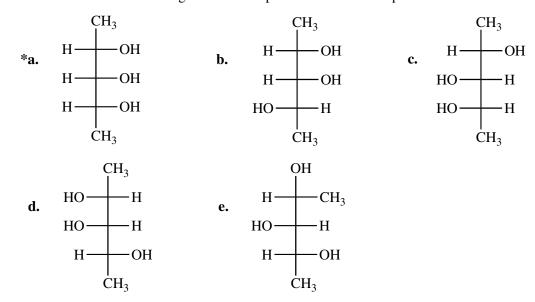
#### The Fischer projection that represents the same molecule as

$$\begin{array}{c} \text{CH}_3\\ \text{H} & \text{OH}\\ \\ \text{CH}_2\text{CH}_3 \end{array}$$
 is:

**a.** 
$$CH_3CH_2$$
  $H$   $CH_3$   $CH_3$   $CH_2CH_3$   $CH_2CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$   $CH_3$ 

d. 
$$H \xrightarrow{CH_3} CH_2CH_3$$
 e.  $HO \xrightarrow{CH_3} H$   $CH_2CH_3$ 

### 5.45.


$$H \xrightarrow{OH} CH_3$$

$$H_3C \xrightarrow{OH} H$$

represents

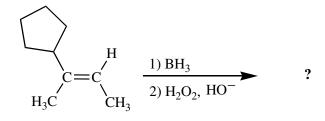
- **a.** (2R,3R)-2,3-butanediol.
- **b.** (2S,3S)-2,3-butanediol.
- **c.** the most stable conformer of (2R,3R)-2,3-butanediol.
- **d.** the least stable conformer of (2R,3R)-2,3-butanediol.
- \*e. *meso*-2,3-butanediol.

#### **5.46.** Which one of the following structures represents a meso compound?



#### 90

# **Stereochemistry and Chemical Reactions**


- **5.47.** When (R)-3-bromo-2-methyl-1-butene is reacted with HBr, two stereoisomers are formed. What is the relationship of these stereoisomers?
  - **a.** enantiomers
- **b.** *meso* compounds
- \*c. diastereomers

**d.** *E* 

- **e.** *Z*
- **5.48.** Treating 1-butene with HCl produces a product with one stereogenic carbon. What is the name of the product?
  - **a.** 2-chloro-1-butene
- **b.** 1-chlorobutane
- $\mathbf{c}$ . (R)-2-chlorobutane

- **d.** (S)-2-chlorobutane
- \*e. both c and d in equal amounts
- **5.49.** When (S)-3-bromo-1-butene is treated with HBr, two stereoisomeric products form. What is the relationship of these two products?
  - a. enantiomers
- \*b. diastereomers
- **c.** *meso* compounds

- d. racemic mixture
- e. cis/trans
- **5.50.** How many stereogenic carbons are produced from the following sequence of reactions?



- **a.** 1
- **\*b.** 2
- **c.** 3
- **d.** 4
- **e.** 5

- **5.51.** Enantiomers may differ in the following property:
  - \*a. the rate at which they react with a chiral reagent
  - **b.** boiling point
  - c. melting point
  - **d.** number of degrees they rotate plane polarized light
  - e. solubility in water
- **5.52.** The product of addition of bromine to (R)-3-buten-2-ol will be
  - **a.** a 50:50 mixture of enantiomers.
  - **b.** a mixture of enantiomers formed in unequal amounts.
  - c. a 50:50 mixture of diastereomers.
  - \*d. a mixture of diastereomers formed in unequal amounts.
  - e. optically inactive.

# **Chapter 6**

# Organic Halogen Compounds; Substitution and Elimination Reactions

# **Nomenclature of Halides**

**6.1.** What is the IUPAC name of the following alkyl halide?

- \*a. 2-bromo-4-methylpentane
- c. 2-methyl-4-bromopentane
- e. 2-bromo-1-isopropylpropane
- **b.** 4-methyl-2-bromopentane
- **d.** 2-bromo-2-methylpentane

**6.2.** What is the IUPAC name of the following alkyl halide?

$$H_3C$$

- a. trans-p-bromotoluene
- **b.** *trans*-4-methylcyclohexyl bromide
- \*c. trans-4-methyl-1-bromocyclohexane
- **d.** *trans*-1-bromo-4-methylcyclohexane
- **e.** *trans-p*-bromomethylcyclohexane

**6.3.** Which of the following structures represents 2,4,4-trichloroheptane?

- a. I
- **b.** II
- c. III
- \***d.** IV
- e. V

# **Nucleophiles/Bases/Leaving Groups**

**6.4.** Which of the following is the best nucleophile?

a. CH<sub>3</sub>OH

**b.** CH<sub>3</sub>O<sup>-</sup>

\*c. CH<sub>3</sub>S<sup>-</sup>

d. CH<sub>3</sub>SH

e. all are the same

**6.5.** Which of the following is the strongest base?

a. H<sub>2</sub>O

**b.** -OH

 $\mathbf{c}$ .  $NH_3$ 

\***d**. -NH<sub>2</sub>

e. F

**6.6.** Which of the following is the best leaving group?

**a.** HO<sup>-</sup>

**b.** Cl<sup>-</sup>

\*c. I<sup>-</sup>

**d.** Br<sup>-</sup>

e.  $H_2N^-$ 

**6.7.** Which of the following is the *best* nucleophile?

 $\mathbf{a}$ .  $H_2O$ 

**b.** CH<sub>4</sub>

\*c. NH<sub>3</sub>

d. HF

**6.8.** Which of the following is an *incorrect* representation of relative nucleophile strength?

**a.**  $-NH_2 > F^-$ 

\***b.**  $HO^- > HS^-$ 

c.  $CH_3^- > HO^-$ 

**d.**  $CH_3O^- > CH_3OH$ 

**e.**  $I^- > Br^-$ 

**6.9.** The reactivity order of

1. CH<sub>3</sub>CH<sub>2</sub>S<sup>-</sup>

2. CH<sub>3</sub>CH<sub>2</sub>O<sup>-</sup>

3. CH<sub>3</sub>CH<sub>2</sub>OH

as nucleophiles is

\*a. 1 > 2 > 3

**b.** 2 > 3 > 1

c. 2 > 1 > 3

**d.** 3 > 2 > 1

**e.** 1 > 3 > 2

# **Reaction Mechanisms**

**6.10.** What is the mechanism of the following reaction?

 $CH_3Br + OH \longrightarrow CH_3OH +$ 

a.  $S_N 1$ 

\***b.**  $S_{N}2$ 

**c.** E1

Br -

**d.** E2

e. both a and b

**6.11.** Which statement is true for  $S_N^2$  reactions?

**a.** The rate of the reaction is dependent on the stability of a carbocation.

**b.** The rate of reaction is dependent on just the substrate.

**c.** The fastest reaction will occur with a tertiary halide.

\*d. Displacement occurs with inversion of configuration.

**e.** The mechanism is a two step process.

**6.12.** Which bromide reacts fastest in  $S_N^2$  reactions?

\*a. CH<sub>3</sub>Br

**b.**  $(CH_3)_2CHBr$ 

 $\mathbf{c}$ .  $(CH_3)_3CBr$ 

**d.**  $(CH_3)_3CCH_2Br$ 

e. CH<sub>3</sub>CH<sub>2</sub>Br

**6.13.** Which of the following is a polar aprotic solvent?

 $\mathbf{a}$ .  $H_2O$ 

- **b.**  $(CH_3)_2NCHO$
- c. CH<sub>3</sub>OH

- **d.**  $(CH_3)_2S=O$
- \*e. both b and d

**6.14.** Which statement(s) is/are true of an E1 elimination?

a. it is a two-step process and has the same first step as a  $S_N1$  mechanism

b. it involves the formation of the carbocation from elimination of a good leaving group

**c.** a common competing reaction is rearrangement of a less stable carbocation to a more stable carbocation

**d.** the loss of a proton by the carbocation is a fast step

\*e. all of the above

**6.15.** When (R)-3-bromo-3-methylhexane is treated with  $H_2O$ , racemic

is produced. By what mechanism does this reaction occur?

- \*a.  $S_N 1$
- **b.**  $S_N 2$
- **c.** E1

- **d.** E2
- e. cannot be explained by one mechanism

**6.16.** The slowest step of an  $S_N 1$  reaction involves:

**a.** attack of the nucleophile on the substrate to form a pentavalent carbon.

\*b. breaking the bond between the carbon and the leaving group to give a carbocation.

**c.** combination of a nucleophile with the carbocation to give the product.

**d.** loss of a proton from the nucleophile to give the product.

e. none of the above.

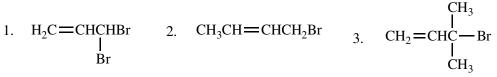
**6.17.** Which of the following bromides will react faster with CH<sub>3</sub>OH in an S<sub>N</sub>1 reaction?

- **b.** CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Br
- c.  $CH_2 = CHCH_2CH_2Br$
- \***d.** (CH<sub>3</sub>)<sub>2</sub>CBrCH<sub>2</sub>CH<sub>3</sub>

e. CH<sub>3</sub>Br

**6.18.** The  $S_N$ 2 mechanism for nucleophilic substitution reactions

**a.** involves two steps and occurs with inversion of configuration.


\*b. involves one step and occurs with inversion of configuration.

c. involves two steps and occurs with racemization.

**d.** involves one step and occurs with retention of configuration.

e. involves one step and occurs with racemization.

- a. involves one step and occurs fastest with primary halides.
- **b.** involves one step and occurs fastest with tertiary halides.
- \*c. involves two steps and occurs fastest with tertiary halides.
- **d.** involves two steps and occurs fastest with primary halides.
- e. involves one step and occurs fastest with aromatic halides.
- **6.20.** The expected  $S_N$ 2 reactivity order of



is:

- \*a. 2 > 1 > 3b. 2 > 3 > 1d. 1 > 3 > 2e. 3 > 1 > 2
- **c.** 1 > 2 > 3

- **6.21.**  $CH_3CH_2C(CH_3)_2Br + (CH_3)_3CO^-K^+$  are most likely to react by
  - **a.** a free-radical chain mechanism.
    - **b.** the  $S_N 1$  mechanism.

**c.** the  $S_N 2$  mechanism.

**d.** the E1 mechanism.

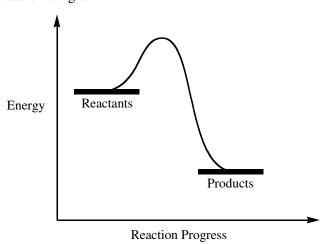
- \*e. the E2 mechanism.
- 6.22.

are most likely to react by

- **a.** a free-radical chain mechanism. **b.** the  $S_N 1$  mechanism.

\*c. the  $S_N^2$  mechanism.

**d.** the E1 mechanism.


- e. the E2 mechanism.
- 6.23. The structure

$$H_3CO$$
 $S$ 
 $CH_3$ 
 $S$ 
 $CH_3$ 

represents the transition state for the reaction of

- **a.** methanol with 2-bromopropene.
- \*b. methoxide with 2-bromopropane.
- **c.** sodium bromide with isopropyl methyl ether.
- **d.** methanol with 2-bromopropane.
- **e.** methoxide with 1-bromopropane.

**6.24.** The energy-reaction diagram



is for

- **a.** an  $S_N$ 2 reaction only.
- **c.** an E2 reaction only.
- **e.** an  $S_N 1$  or E1 reaction.

- **b.** an  $S_N 1$  reaction only.
- **d.** an E1 reaction only.
- \*f. an  $S_N$ 2 or E2 reaction

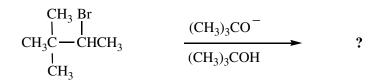
# Reactions

**6.25.** The *major* product of the following reaction is:

$$\begin{array}{ccc} CH_3CHCH_2CH_2Br & \xrightarrow{CH_3CH_2S^- Na}^+ \\ \downarrow & & \\ CH_3 & & \\ \end{array}$$
?

a. I

h. II


\*c. III

d. I and II

- D. 11
- e. there is no major product
- **6.26.** When 1-chlorobutane is reacted with the bulky base, potassium *t*-butoxide, in *t*-butyl alcohol, the major elimination product is:
  - \*a. 1-butene
- **b.** *cis*-2-butene
- c. trans-2-butene

- **d.** butyl *t*-butyl ether
- e. butyl alcohol
- **6.27.** How many different *E2 products* can form from the dehydrohalogenation of 2-bromopentane?
  - **a.** 1
- **b.** 2
- \*c. 3
- **d.** 4
- **e.** 5

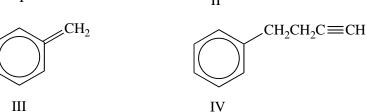
# **6.28.** What is the *major* product of the following reaction?



**a.**  $(CH_3)_2C = C(CH_3)_2$ 

\***b.**  $(CH_3)_3CCH = CH_2$ 

c.  $(CH_3)_2C = CHCH_3$ 


**d.**  $(CH_3)_2C = CHCH_2CH_3$ 

e. none of these

### **6.29.** What is the final product of the following sequence of reactions?

$$CH_3C \equiv CH \qquad \begin{array}{c} 1. \text{ NaNH}_2 \\ \hline 2. & \\ \hline \end{array} \qquad \begin{array}{c} \longleftarrow CH_2Br \end{array}$$

$$CH_2C \equiv CCH_3$$
 $I$ 
 $I$ 



a. Id. IV

- \*b. II
  e. III and IV
- c. III
- **6.30.** What alkyne is produced when sodium acetylide reacts with CH<sub>3</sub>CH<sub>2</sub>I?
  - **a.** 2-butyne
- **\*b.** 1-butyne
- c. 2-butene
- **d.** 1-butene
- e. propyne
- **6.31.** 1-Butanethiol, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SH, is produced by the reaction of 1-bromobutane with:
  - a. NH<sub>3</sub>
- **b.** CH<sub>3</sub>OH
- **c.** CH<sub>3</sub>S<sup>-</sup>
- **\*d.** −SH
- **e.** CH<sub>3</sub>O<sup>-</sup>

6.32. Which Fischer projection represents the product of the following reaction?

- $\mathbf{a.} \quad \mathbf{H} \frac{\text{CH}_3}{\text{NH}_2} \qquad \mathbf{b.} \quad \mathbf{H} \frac{\text{CH}_3}{\text{CN}} \qquad *\mathbf{c.} \quad \text{NC} \frac{\text{CH}_3}{\text{H}}$

What is the *major* product of the following reaction? 6.33.

$$\begin{array}{c}
\text{CH}_{3} \\
\text{Br}
\end{array}$$

OCH<sub>2</sub>CH<sub>3</sub>

OCH<sub>2</sub>CH<sub>3</sub>

# **6.34.** The major product of the reaction

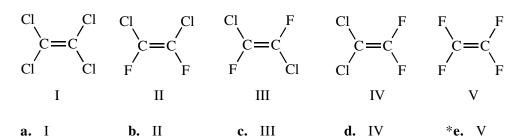
$$H_{3}C$$
  $CH_{2}CH_{3}$   $CH_{3}S^{-}Na^{+}$ 

is

# **6.35.** The products of the following reactions are:

$$CH_3$$
  $CH_3OH$ 

is


$$II \qquad \begin{array}{c} OCH_3 \\ CH_3 \end{array}$$

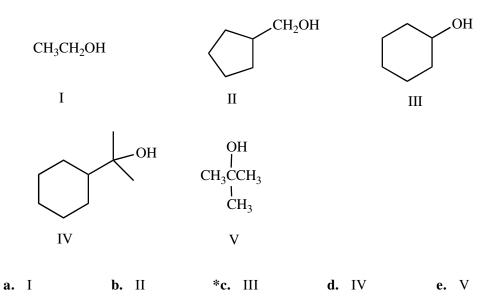
- a. I, III
- **\*b.** I, II, III
- c. III, V
- **d.** II, IV, V
- e. II, III

# **Miscellaneous**

- **6.36.** The monomer used to prepare Teflon is
  - a.  $CH_2=CH_2$
- **b.** CH<sub>2</sub>=CHCl
- c. CH<sub>3</sub>CH=CH<sub>2</sub>

- \***d.**  $CF_2=CF_2$
- e. CH<sub>2</sub>Cl<sub>2</sub>
- **6.37.** Which of the following halocarbons is the raw material for the synthesis of Teflon?




- **6.38.** Polyhalogenated aliphatic compounds have not been used as:
  - \*a. toothpaste additives
- **b.** fire retardants
- c. degreasing agents

- d. insecticides
- e. refrigerants

# **Chapter 7** Alcohols, Phenols, and Thiols

### **Nomenclature of Alcohols**

**7.1.** Which of the following is a secondary (2°) alcohol?



7.2. Which of the following is 3-pentyn-1-ol?

a. 
$$CH_3CH_2C \equiv CCH_2OH$$

e. 
$$CH_3C \equiv CCH_2CH_2CH_2OH$$

7.3. What is the IUPAC name for isobutyl alcohol?

a. 1-butanol

**b.** 2-butanol

**c.** 2-methyl-2-butanol

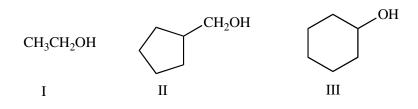
\*d. 2-methyl-1-propanol

**e.** 2,2-dimethylpropanol

7.4. What would be the IUPAC name for the following alcohol?

#### CH<sub>3</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>2</sub>OH

**a.** 2-methyl-4-butanol


**b.** 2-methyl-4-hydroxybutanol

c. 3-methyl-2-butanol

**d.** 1-hydroxy-3-methylbutanol

\*e. 3-methyl-1-butanol

# **7.5.** Which of the following molecules is classified as a tertiary $(3^{\circ})$ alcohol?



- a. I
- **b.** II
- c. III
- \*d. IV
- e. V

# **7.6.** What is the correct name for the following molecule?

- a. 2-butanol
- **b.** 3-thiobutanol
- \*c. 2-butanethiol

- **d.** 2-thiobutanol
- e. 3-butanethiol

### **7.7.** What is the name of the following alcohol?

- a. 1-ethyl-2-methylbenzyl alcohol
- **b.** methylphenylpropanol
- **c.** 2-methyl-2-phenyl-1-propanol
- \*d. 2-phenyl-2-butanol

- e. cumyl alcohol
- **7.8.** What is a correct name for  $(CH_3)_2CHO^- K^+$ ?
  - a. potassium alkoxide

**b.** potassium ethoxide

c. potassium propoxide

- **d.** potassium dimethylethoxide
- \*e. potassium isopropoxide

#### 7.9. The correct name for

is

- **a.** 3-hydroxybromobenzene.
- **c.** 3-bromobenzol.
- **e.** *m*-bromobenzol.

- **b.** 3-bromobenzyl alcohol.
- \***d.** *m*-bromophenol.

## **7.10.** The formula for 2-pentanethiol is:

- CH<sub>3</sub>CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SH ÓН
- CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
- CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>

- CH<sub>3</sub>CHCHCH<sub>2</sub>CH<sub>3</sub> b. HS OH
- \*d. CH<sub>3</sub>CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> SH

# **Properties of Alcohols**

- **7.11.** Which of the following molecules would be the best hydrogen bond donor?
  - a. CH<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub>
- **b.** CH<sub>3</sub>CN
- \*c. CH<sub>3</sub>OH

**d.** CH<sub>3</sub>SH

- e. CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>
- **7.12.** Which of the following molecules would have the highest boiling point?
  - \*a. CH<sub>3</sub>CH<sub>2</sub>OH b. CH<sub>3</sub>OCH<sub>3</sub>
- c. CH<sub>3</sub>CH<sub>2</sub>Cl d. CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub> e. CH<sub>3</sub>CH<sub>2</sub>I
- The expected order of boiling points of
  - CH<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub> 1.
- 2. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH
- CH<sub>3</sub>CHCH<sub>3</sub> ÓН

is:

- **a.** 3 > 2 > 1 **b.** 1 > 2 > 3 **c.** 1 > 3 > 2 \***d.** 2 > 3 > 1 **e.** 2 > 1 > 3

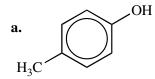
# **Acid-Base Chemistry**

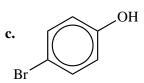
- **7.14.** A Lewis base is a:
  - a. proton donor

- \*b. electron pair donor
- **c.** electron pair acceptor

- **d.** proton acceptor
- **7.15.** The conjugate base of sulfuric acid,  $H_2SO_4$ , is:
  - **a.**  $H_3SO_4^+$  **b.**  $SO_3$
- \*c.  $HSO_4^-$  d.  $H_2SO_3$  e.  $HSO_3^-$

- **7.16.** If the  $pK_a$  of isopropyl alcohol is 17, what is the  $K_a$  of isopropyl alcohol?
  - **a.**  $17 \times 10^{-17}$
- \***b.**  $10^{-17}$


**c.**  $10^{-3}$ 


**d.**  $10^{17}$ 

**e.**  $10^3$ 

- **f.**  $17 \times 10^{17}$
- **7.17.** Which of the following molecules would be the strongest Brønsted-Lowry acid?
  - a. H<sub>2</sub>O
- **b.** H<sub>2</sub>S
- c. HF
- \***d.** HCl
- e. CH<sub>4</sub>

**7.18.** Which of the following phenols is the strongest acid?





- **7.19.** Which of the following is the strongest base?
  - a. CH<sub>3</sub>CH<sub>2</sub>OH
- **b.**  $CH_3CH_2O^-$
- $\mathbf{c}$ .  $CF_3CH_2O^-$

- d. CH<sub>3</sub>CH<sub>2</sub>S <sup>-</sup>
- \*e. CH<sub>3</sub>CH<sub>2</sub>NH
- **7.20.** Electron-withdrawing substituents
  - **a.** increase acidity by increasing the stability of acids.
  - **b.** decrease acidity by increasing the stability of a conjugate base.
  - \*c. increase acidity by increasing the stability of a conjugate base.
  - **d.** decrease acidity by increasing the stability of acids.
  - e. can only have a slight effect on acidity.
- **7.21.** Phenols are stronger than alcohols as acids because of
  - \*a. resonance stabilization of phenoxide ions.
  - **b.** resonance stabilization of phenols.
  - **c.** resonance stabilization of alkoxide ions.
  - **d.** resonance stabilization of alcohols.
  - e. hydrogen bonding in phenols.
- **7.22.** The p $K_a$  of an acid whose  $K_a = 10^{-10}$  is
  - **a.**  $10^{10}$
- **\*b.** 10
- c. -10
- **d.** 1
- e. -1

# **Reaction Mechanisms**

- **7.23.** Which of the following alcohols would react most rapidly under  $S_N 1$  conditions?
  - a. CH<sub>3</sub>OH

- **b.** CH<sub>3</sub>CH<sub>2</sub>OH
- c. (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>OH

- \***d.** (CH<sub>3</sub>)<sub>3</sub>COH
- e. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH

- **7.24.** Which statement is false? *Tert*-Butyl alcohol reacts
  - **a.** with HCl to give 2-methylpropene by an E1 mechanism.
  - **b.** with HCl to give 2-chloro-2-methylpropane by an  $S_N1$  mechanism.
  - \*c. with HCl and HBr at very different rates.
  - **d.** with HCl or HBr to give a carbocation intermediate.
  - e. with HCl to give both 2-methylpropene and 2-chloro-2-methylpropane.
- **7.25.** The rate-determining step in the following reaction is:

$$(CH_3)_3C$$
 — OH + HBr  $\longrightarrow$   $(CH_3)_3C$  — Br +  $H_2O$ 

- a. protonation of the alcohol.
- b. ionization of the alcohol to give a carbocation.
- \*c. loss of water from the protonated alcohol to give a carbocation.
- d. capture of a carbocation by bromide ion.
- e. displacement of water from the protonated alcohol by bromide ion.
- **7.26.** The rate-determining step in the following reaction is:

- a. protonation of the alcohol
- b. ionization of the alcohol to give a carbocation.
- c. loss of water from the protonated alcohol to give a carbocation
- d. capture of a carbocation by bromide ion.
- \*e. displacement of water from the protonated alcohol by bromide ion.

#### Reactions

- **7.27.** What type of compound is formed when a secondary (2°) alcohol is treated with Jones' reagent?
  - **a.** an alkene
- **b.** an alkyne
- c. an aldehyde \*d. a ketone
- e. an acid
- **7.28.** When an alcohol reacts with an alkali metal like Na, the product formed is a(n):
  - a. alkene

- \*b. alkoxide
- c. acetylide

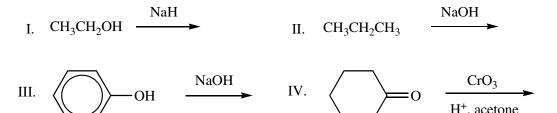
**d.** alkane

- e. hydroxide
- f. alkyne
- **7.29.** Which reagents would you use to accomplish the following transformation?

$$CH_3(CH_2)_6CH_2OH$$
  $\longrightarrow$   $CH_3(CH_2)_6CO_2H$ 

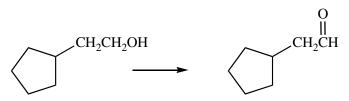
- **a.**  $H_2SO_4$ ,  $H_2O$ , acetone
- \*b. CrO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, acetone
- c. PCC/CH<sub>2</sub>Cl<sub>2</sub>

- **d.** Zn, HCl, acetone
- e. H<sub>2</sub>, Pd, acetone
- **7.30.** What is the major product from the E1 dehydration of 2-methyl-2-pentanol?
  - a. 4-methyl-1-pentene


**b.** 4-methyl-3-pentene

\*c. 2-methyl-2-pentene

**d.** 2-methyl-1-pentene


e. 4-methyl-2-pentene

#### **7.31.** Which of the following mixtures would <u>NOT</u> react?



- a. I
- b. II
- c. III
- d. IV
- \*e. II and IV

#### **7.32.** What reagents would accomplish the following transformation?



- **a.** 1. PCl<sub>3</sub> 2. H<sub>3</sub>O<sup>+</sup>
- **b.** CrO<sub>3</sub>, H<sup>+</sup> in acetone
- \*c. PCC, CH<sub>2</sub>Cl<sub>2</sub>

- **d.** 1. Na 2. CH<sub>3</sub>OH
- e. none of the above

# **7.33.** Acid-catalyzed dehydration of 3-methyl-3-hexanol can give the following number of alkenes (including stereoisomers):

- **a.** 2
- **b.** 3
- **c.** 4
- \*d. 5
- **e.** 6

#### **7.34.** Cyclohexanol and phenol react similarly toward

- \*a. sodium hydride.
- **b.** FeBr<sub>3</sub>, Br<sub>2</sub>.
- c. conc. H<sub>2</sub>SO<sub>4</sub>, heat.

d. PCl<sub>3</sub>.

e. SOCl<sub>2</sub>.

### 7.35. Oxidation of secondary alcohols with Jones' reagent (CrO<sub>3</sub>, H<sup>+</sup>, acetone) gives

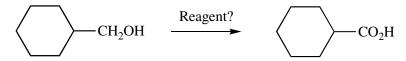
- **a.** carboxylic acids.
- **b.** aldehydes.
- \*c. ketones.

- **d.** chromate esters.
- e. tertiary alcohols.

# **7.36.** Which of the following reagents will oxidize primary alcohols to carboxylic acids?

- 1.  $CrO_3$ ,  $H_2SO_4$
- 2. PCC
- 3. PCl<sub>3</sub>
- 4. SOCl<sub>2</sub>
- **\*a.** only 1
- **b.** only 2
- **c.** only 3
- **d.** only 4
- **e.** 1 and 2

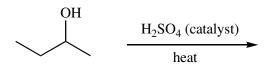
## **7.37.** Which of the following reagents will oxidize secondary alcohols to ketones?


- 1.  $CrO_3$ ,  $H_2SO_4$
- 2. PCC
- 3. PCl<sub>3</sub>
- 4. SOCl<sub>2</sub>
- **a.** only 1
- **b.** only 2
- **c.** only 3
- **d.** only 4
- \*e. 1 and 2

- **7.38.** The reaction of phenol with bromine gives
  - a. hydroquinone.
- **b.** 1,4-benzoquinone.
- \*c. 2,4,6-tribromophenol.
- **d.** 3,5-dibromophenol.
- e. bromobenzene.
- **7.39.** Which reagent or reagents can be used irreversibly to accomplish the following transformation:



- 1. NaH
- 2. Na
- 3. NaOH
- a. only 1\*d. 1 and 2


- **b.** only 2
- **e.** 1, 2, and 3
- c. only 3
- **7.40.** Which reagent will accomplish the following transformation?



- **a.** pyridinium chlorochromate
- c. H<sub>2</sub>O<sub>2</sub>, NaOH, H<sub>2</sub>O
- e. all of the above

- \***b.**  $K_2Cr_2O_7$ ,  $H_2SO_4$ ,  $H_2O$
- **d.** Ag(NH<sub>3</sub>)<sub>2</sub><sup>+</sup>, NaOH (Tollen's reagent)
- **7.41.** What is the product of the following reaction sequence?

- \*a. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SCH<sub>3</sub>
  - c. (CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S)<sub>2</sub>
  - e. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>S<sup>+</sup>(CH<sub>3</sub>)<sub>2</sub> I<sup>-</sup>
- **b.** CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>
- **d.** CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH
- **7.42.** What is the major product of the following reaction?



- a. CH<sub>3</sub>CH<sub>2</sub>CH=CH<sub>2</sub>
- \*c. trans-CH<sub>3</sub>CH=CHCH<sub>3</sub>
- **e.** none of the above

- **b.** *cis*-CH<sub>3</sub>CH=CHCH<sub>3</sub>
- **d.**  $(CH_3)_2C=CH_2$

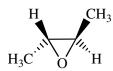
# **Chapter 8 Ethers and Epoxides**

# **Structure and Nomenclature of Ethers**

- **8.1.** What is a correct name for CH<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub>?
  - a. ethyl ether
- **b.** dimethyl ether
- \*c. methoxyethane

- **d.** ethoxymethane
- e. propane
- **8.2.** Which of the following molecules is the correct structure for dibenzyl ether?
  - a. CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub>

**b.** O


c. 
$$OCH_3$$

\***d.** CH<sub>2</sub>OCH<sub>2</sub>—

**8.3.** What is the IUPAC name for the following molecule?

- **a.** 2-bromo-4-ethyl-4-methoxypentane
- **b.** 4-bromo-2-ethyl-2-methoxypentane
- \*c. 2-bromo-4-methoxy-4-methylhexane
- **d.** 2-bromo-3-methoxy-3methyl-hexane
- e. ethyl methyl propyl ether
- **8.4.** Which of the following molecules is named oxirane?
  - \*a. O
- **b.** N | H
- c. S
- **d.** C
- e. CH<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub>

#### 8.5. What is the correct IUPAC name for the following molecule?



- **a.** 1,2-dimethyloxirane
- \***b.** *trans*-1,2-dimethyloxirane
- c. 2-butene oxide

- **d.** cis-1,2-dimethyloxirane **e.** oxobutane

#### 8.6. Which of the following molecules is correctly named diphenyl ether?

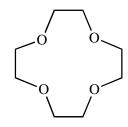
CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub>

OCH<sub>3</sub>

- CH<sub>2</sub>OCH<sub>2</sub> d.

#### **8.7.** What is a name for the following molecule?

CH<sub>3</sub>CH<sub>2</sub>CHOCH<sub>2</sub>CH<sub>3</sub> ĊН<sub>3</sub>


- **a.** 3-ethoxy-3-methylpropane
- **b.** ethyl isobutyl ether

c. butyl ethyl ether

\*d. 2-ethoxybutane

e. 3-ethoxybutane

#### 8.8. What is the correct name for the following crown ether?



- **a.** [8]crown-4
- **\*b.** [12]crown-4
- **c.** [4]crown-4

- **d.** [15]crown-5
- e. [18]crown-6
- **8.9.** A crown ether named [18]crown-6 has a total of \_\_ carbons and \_\_\_\_ oxygens .
  - **a.** 18, 6

**b.** 6, 18

**c.** 24, 6

**d.** 6, 24

\***e.** 12, 6

**8.10.** The formula for 2-ethoxybutane is



$$\begin{array}{c} \text{OCH}_3\\ \mid\\ \mathbf{c.} & \text{CH}_3\text{CHCH}_2\text{CH}_3 \end{array}$$

d. CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>

## **Properties of Ethers**

**8.11.** Which one of the following molecules has the highest boiling point?

- **a.** 3-methoxy-1-propanol
- **b.** 1,2-dimethoxyethane
- \*c. 1,4-butanediol

- **d.** 1,1-dimethoxyethane
- **e.** 2-methoxy-1-propanol

## **Preparation and Reaction of Grignard Reagents**

**8.12.** Which of the following is a Grignard reagent?

- \*a. CH<sub>3</sub>MgCl
- **b.** CH<sub>3</sub>Li

c. (CH<sub>3</sub>)<sub>2</sub> CuLi

**d.** CH<sub>3</sub>Na

**e.**  $(CH_3)_2 Zn$ 

**8.13.** Which reaction will yield CH<sub>3</sub>CH<sub>2</sub>D?

a.  $CH_3CH_3 + D_2O$ 

\***b.**  $CH_3CH_2MgCl + D_2O$ 

c.  $CH_3CH_2OLi + D_2O$ 

**d.**  $CH_3CH_2OH + D_2O$ 

**e.** more than one or these

**8.14.** Starting with p-bromoanisole (p-bromophenyl methyl ether), what sequence of reactions will produce p-deuterioanisole?

a. 1.  $D_2O$  2.  $Br_2$ ,  $AlBr_3$ 

\***b.** 1. Mg, ether 2.  $D_2O$ 

c. 1.  $D_2O$  2. Mg, ether

- **d.** 1.  $H_2SO_4$ , 2. Mg, ether 3.  $D_2O$
- **e.** 1. Br<sub>2</sub>, AlBr<sub>3</sub>, 2. Mg, ether, 3. D<sub>2</sub>O

## **8.15.** The products of

$$H_3C$$
  $\longrightarrow$   $CH_2CH_2MgBr$  +  $CD_3OH$   $\longrightarrow$ 

are:

**a.** 
$$H_3C$$
  $\longrightarrow$   $CH_2CH_2D$  +  $MgBr(OCD_2H)$ 

\***b.** 
$$H_3C$$
  $\longrightarrow$   $CH_2CH_3$  +  $MgBr(OCD_3)$ 

c. 
$$H_3C$$
 —  $CH_2CH_2OCD_3$  +  $MgBrH$ 

**d.** 
$$H_3C$$
  $\longrightarrow$   $CH$   $=$   $CH_2$   $+$   $MgBrCD_3$   $+$   $H_2O$ 

e. 
$$H_3C$$
  $\longrightarrow$   $CH_2CH_2OH$  +  $MgBr(CD_3)$ 

## **Preparation of Ethers**

- **8.16.** The synthesis of dipropyl ether can be accomplished using 1-propanol. What reactants and conditions are necessary for this to occur?
  - a. Na and  $180^{\circ}$
- **b.** PBr<sub>3</sub> and  $140^{\circ}$
- \*c.  $H_2SO_4$  and  $140^\circ$

- d. Zn and H<sup>+</sup>
- e. PCC and 180°
- **8.17.** The best Williamson synthesis of cyclohexyl methyl ether involves the following reaction:

a. 
$$Cl$$
 +  $CH_3OH$  -  $CH_3O^-$  -  $CH_3O^-$ 

c. 
$$^{OH}$$
 +  $^{CH_3Cl}$   $\longrightarrow$  \*d.  $^{O^-}$  +  $^{CH_3Cl}$   $\longrightarrow$ 

- **8.18.** What alkene reacts with methanol in an acid catalyzed reaction to produce *t*-butyl methyl ether?
  - a. ethylene
- \***b.** 2-methylpropene
- c. 2-butene

d. propene

- e. 1-butene
- **8.19.** The best route to  $CH_3OC(CH_3)_3$  is
  - a.  $CH_3O^-Na^+ + (CH_3)_3CBr$
  - \***b.**  $CH_3OH$  +  $CH_2=C(CH_3)_2$   $\xrightarrow{H^+}$
  - c. (CH<sub>3</sub>)CMgBr + CH<sub>3</sub>OH →
  - **d.**  $CH_3OMgBr + (CH_3)_3C I$
  - e.  $CH_3MgBr + (CH_3)_3COH$

## **Behavior of Ethers in Acids**

**8.20.** When anisole (methyl phenyl ether) is treated with concentrated HBr, which of the following products are produced?

- a. I
- b. II
- c. III
- \*d. IV
- e. I and IV
- **8.21.** The mechanism by which ethers are cleaved in concentrated HI is:
  - a.  $S_N 1$

\***b.**  $S_N 2$ 

**c.** E1

**d.** E2

- e. none of these
- **8.22.** Which of the following ethers will cleave the fastest with H<sub>2</sub>O and H<sup>+</sup>?
  - a. CH<sub>3</sub>OCH<sub>3</sub>
- b. CH<sub>3</sub>CHOCH<sub>3</sub>
- c. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>

- \*d. CH<sub>3</sub>COCH<sub>3</sub>
  CH<sub>3</sub>COCH<sub>3</sub>
- e. CH<sub>3</sub>CHCH<sub>2</sub>OCH<sub>3</sub>

## **8.23.** Which of following ethers will cleave by an $S_N1$ mechanism?

- a. CH<sub>3</sub>OCH<sub>3</sub>
- **b.** CH<sub>3</sub>CHOCH<sub>3</sub>
- c. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>

- \*d. CH<sub>3</sub>COCH<sub>3</sub>
  CH<sub>3</sub>COCH<sub>3</sub>
- e. CH<sub>3</sub>CHCH<sub>2</sub>OCH<sub>3</sub>

## **8.24.** The organic products of the reaction

$$OCH_2CH_3 + \frac{1. BBr_3}{2. H_2O}$$

are:

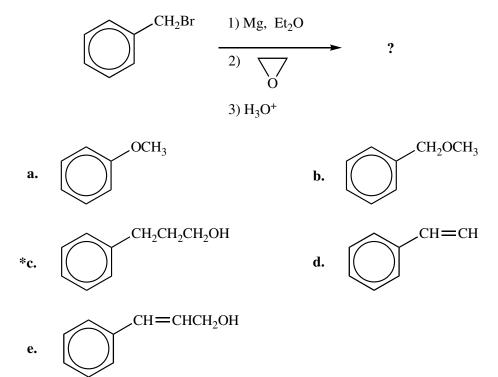
- **a.** ethanol and bromobenzene.
- **b.** ethyl bromide and bromobenzene.

**c.** ethanol and phenol.

\*d. ethyl bromide and phenol.

e. ethylene oxide and phenol.

## **Preparation and Reactions of Epoxides**


- **8.25.** Which of the following molecules is classified as an organic peroxy acid?
  - a. HOCH<sub>2</sub>CH<sub>2</sub>OH
- **b.** CH<sub>3</sub>CO<sub>2</sub>H
- c. CH<sub>3</sub>CHO

- O || **d.** CH<sub>3</sub>CCH<sub>3</sub>
- \*e. CH<sub>3</sub>CO<sub>3</sub>H
- **8.26.** The first step in the mechanism of acid catalyzed ring opening of oxirane is:
  - \*a. protonation of the oxygen in the oxirane.
  - **b.** anion attack of the carbon in the oxirane.
  - c. cation attack of the carbon in the oxirane.
  - **d.** formation of a stable carbocation.
  - e. none of the above.
- **8.27.** When cyclohexene is treated with peroxyacetic acid, the product that forms is:
  - a. cyclohexanediol
- **b.** 1,2-cyclohexanediol
- c. hexanol

- \*d. cyclohexene oxide
- e. dicyclohexyl ether
- **8.28.** The correct structure for peroxyacetic acid is:
  - **a.** CH<sub>3</sub>CO<sub>2</sub>H
- **b.** CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>OH
- \*c. CH<sub>3</sub>CO<sub>3</sub>H

- **d.** CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H
- **e.** CH<sub>3</sub>OOCH<sub>3</sub>

## **8.29.** What is the final product of the following sequence of reactions?



- **8.30.** Which of the following statements about ethylene oxide is false?
  - \*a. Adds HBr according to Markovnikov's rule.
  - **b**. Can act as a Lewis base.
  - c. Reacts with Grignard reagents to give primary alcohols.
  - **d.** Can be made from ethene, oxygen, and a catalyst.
  - e. Can be hydrated to ethylene glycol.
- **8.31.** Which reagent will accomplish the following reaction?

$$\bigcirc \rightarrow \bigcirc \circ$$

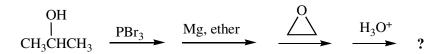
a. NaOH

- \*b. CH<sub>3</sub>CO<sub>3</sub>H
- c. H<sub>2</sub>O, H<sub>2</sub>SO<sub>4</sub>

- **d.** (a) BH<sub>3</sub> (b) NaOH, H<sub>2</sub>O<sub>2</sub>
- e. CH<sub>3</sub>CO<sub>2</sub>H
- **8.32.** The product of the reaction

$$CH_3CH_2OH$$
 +  $O$   $H^+$ 

is:


- a. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>.
- c. CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub>.
- **e.** none of the above.

- \*b. CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>OH.
- **d.** CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH.
- **f.** all of the above.

## **Miscellaneous**

- **8.33.** 1-Hexanol and propyl ether are examples of:
  - a. enantiomers
- **b.** diastereomers
- c. stereoisomers

- \*d. constitutional isomers
- e. none of these
- **8.34.** What is the final product in the following reaction sequence?



- a. CH<sub>3</sub>CHOCH<sub>2</sub>CH<sub>2</sub>OH
  CH<sub>3</sub>
- **b.** CH<sub>3</sub>CHCH<sub>2</sub>CH<sub>2</sub>Br
- \*c. CH<sub>3</sub>CHCH<sub>2</sub>CH<sub>2</sub>OH

  CH<sub>3</sub>

- d. CH<sub>3</sub>CHOCH<sub>2</sub>CH<sub>3</sub>
- e. none of these
- **8.35.** Isopropyl bromide reacts with Li to give:
  - a. propene

- **b.** propyllithium
- c. propane

- \*d. isopropyllithium
- e. butane
- **8.36.** Which of the following ethers are unsymmetrical?
  - a. CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub>
- **b.** (CH<sub>3</sub>)<sub>2</sub>CHOCH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub> **c.** CH<sub>3</sub>OCH<sub>3</sub>
- **d.** CH<sub>3</sub>OCH<sub>2</sub>CH<sub>3</sub>
- \*e. both b and d
- **8.37.** A reaction that would give n-butyllithium is
  - a. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> + Li

- \***b.**  $CH_3CH_2CH_2CH_2Br + 2 Li$
- c. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Br + LiBr
- **d.** CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH + Li
- e. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> + CH<sub>3</sub>Li
- **8.38.** Adding Br<sub>2</sub> in H<sub>2</sub>O will distinguish which of following pairs of compounds?
  - a. diisopropyl ether and hexane
  - \*b. ethyl phenyl ether and allyl phenyl ether
  - c. 1-butanol and methyl propyl ether
  - **d.** diethyl ether and ethanol
  - e. toluene and anisole

# **Chapter 9 Aldehydes and Ketones**

## Nomenclature of Aldehydes, Ketones and Derivatives

**9.1.** The common name for the following molecule is:



- a. acetaldehyde
- \*b. propionaldehyde
- c. butanal

- **d.** propyl aldehyde
- e. ethylmethanal
- **9.2.** What is the structure of cyclopentanecarbaldehyde?

. СH<sub>2</sub>OH



- \*d.
- e. OH

- **9.3.** The IUPAC name for acetone is
  - a. butanone
- **b.** 2-pentanone
- c. 3-pentanone

- \*d. propanone
- e. acetophenone
- **9.4.** The IUPAC name for the following molecule is:

- **a.** 3-ethyl-1-phenyl-3-pentenone
- **b.** 3-ethyl-5-phenyl-2-penten-4-one

**c.** allyl benzyl ketone

- **d.** (E)-3-ethyl-1-phenyl-3-penten-2-one
- \*e. (Z)-3-ethyl-1-phenyl-3-penten-2-one
- **9.5.** What is the class of compound produced from the reaction of a ketone with hydrazine?
  - a. oxime

**b.** amide

\*c. hydrazone

- d. semicarbazone
- e. imide

#### 9.6. Which of the following molecules is a hemiacetal?

#### 9.7. Which of the following compounds is a hemiacetal?

ĊH<sub>3</sub>

OCH<sub>3</sub>

#### 9.8. Which of the following compounds is a cyanohydrin?

a. HO CN b. 
$$CH_2CH_2$$
 \*c. CHCN OH CN

d.  $C\equiv_{N-O^-}^+$  e.  $CH_2CH_2$  \*c.  $CH_2$ 

#### 9. 9. Which of the following is a hydrazone?

\*a.

**a.** 
$$CH_3CH = N - NH_2$$
 **b.**  $CH_3CH = N - OH$ 
**c.**  $CH_3CH = N - N - C - NH_2$ 
**d.**  $CH_3CH_2 - NH - NH_2$ 

**b.**  $CH_3CH=N-OH$ 

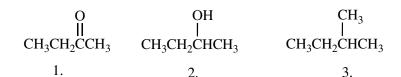
OH

 $NH_2$ 

**9.10.** The name of

is:

- **a.** 2-hydroxy-4-pentanone. **b.** 2-oxo-4-pentanol. **c.** 4-oxo-2-pentanol.
- **d.** 1-acetyl-2-propanol. \*e. 4-hydroxy-2-pentanone.


## **Properties of Aldehydes and Ketones**

- **9.11.** Which of the following molecules has the highest boiling point?
  - **a.** o-xylene
- **b.** m-xylene
- $\mathbf{c}$ . p-xylene

- **d.** benzaldehyde
- \*e. benzyl alcohol
- **9.12.** Which of the following aldehydes can exist in equilibrium with a cyclic hemiacetal?
  - **a.** 4-pentenal
- **b.** 3-hydroxypropanal
- c. 2-hydroxybutanal

- **d.** 3-hydroxybutanal
- \*e. 4-hydroxybutanal
- **9.13.** What class of compound most closely resembles an acetal in its reactivity with CH<sub>3</sub>MgBr?
  - \*a. ethers
- **b.** aldehydes
- **c.** ketones
- **d.** alcohols
- e. thiols

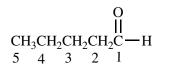
- **9.14.** In a carbonyl group
  - a. the oxygen acts as a Lewis acid.
  - **b.** the C=O bond length is shortened due to resonance.
  - **c.** the carbon is  $sp^3$  hybridized.
  - **d.** the carbon is nucleophilic and the oxygen is electrophilic.
  - \*e. the carbon is electrophilic and the oxygen is nucleophilic.
- **9.15.** The expected order of boiling points of



is:

**a.** 3>2>1

**\*b.** 2>1>3


**c.** 2>3>1

**d.** 1>2>3

**e.** 1>3>2

## **Enols/Enolates/Tautomerism**

**9.16.** Which of the hydrogens in the following molecule are most acidic? The hydrogens on carbon



- **a.** 1 \***b** 2
- **c.** 3
- **d.** 4
- **e.** 5

**9.17.** The equilibrium that exists between the keto and enol forms of aldehydes and ketones is known as:

- a. stereoisomerism
- **b.** configurational isomerism
- **c.** geometric isomerism

- \*d. tautomerism
- e. positional isomerism

**9.18.** The number of  $\alpha$ -hydrogens in



is

- **a.** 1
- **b.** 3
- \*c. 4
- **d.** 8
- **e.** 14

#### 9.19. The predominant product from the reaction

$$CH_3CH_2C$$
 $CH_3O^-Na^+$ 
 $CH_3OD \text{ (excess)}$ 

is:

a. 
$$CD_3CD_2C$$

D

D

D

D

D

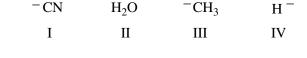
D

$$\mathbf{d.} \quad \text{CD}_3\text{CH}_2\text{C} \longrightarrow$$

e. 
$$CD_3CD_2C$$

#### 9.20. The enol tautomer of 3-pentanone is:

**b.** 
$$CH_2 = CH - C - CH_2 - CH_3$$


#### 9.21. Which hydrogens in the following compound will be exchanged most rapidly for deuterium upon reaction with D<sub>2</sub>O and NaOD?

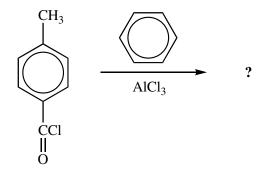
$$H_4$$
 $H_3$ 
 $H_2$ 
 $H_5$ 

- a. H<sub>1</sub>
- **b.**  $H_2$
- \*c. H<sub>3</sub>
- $\mathbf{d}$ .  $\mathbf{H}_4$
- **e.** H<sub>5</sub>

### **Reaction Mechanisms**

- **9.22.** In the mechanism for acid catalyzed hemiacetal formation, the first step is:
  - \*a. protonation of the carbonyl oxygen
  - **b.** nucleophilic attack at the carbonyl carbon
  - c. protonation of the oxygen of the alcohol
  - **d.** nucleophilic attack at the carbon of the alcohol
  - e. elimination of a water molecule
- **9.23.** The *second* step in the base catalyzed aldol condensation is:
  - a. formation of the enolate ion
  - \*b. addition of an enolate to a carbonyl group
  - **c.** protonation of the alkoxide ion
  - **d.** protonation of the carbonyl oxygen
  - e. loss of a proton from the  $\alpha$  carbon
- **9.24.** What statement is *false* relative to the nucleophilic additions?
  - **a.** When a weak nucleophile is present, the reaction can be catalyzed by acid.
  - **b.** The nucleophile attacks the trigonal carbon of the carbonyl group.
  - \*c. Ketones are more reactive than aldehydes.
  - **d.** Nucleophiles that add irreversibly are poor leaving groups.
  - **e.** Nucleophiles can be classified as those that add reversibly to carbonyl compounds and those that add irreversibly.
- **9.25.** Which statement about the mechanism of imine formation from a primary amine and an aldehyde or ketone is false?
  - **a.** The first steps involve addition of the amine to the carbonyl carbon to form a tetrahedral intermediate.
  - **b.** The last steps involve elimination of water to form a carbon-nitrogen p-bond.
  - c. All steps are reversible.
  - \*d. The reaction involves S<sub>N</sub>2 displacement of the carbonyl oxygen by the amine nitrogen.
  - e. The reaction does not require a strong acid catalyst.
- **9.26.** Which of the following nucleophiles add reversibly to a carbonyl group?




- a. I, II and IV
- **b.** II

\*c. I and II

- d. III and IV
- e. I, II, III and IV

## **Reactions**

**9.27.** What type of compound is produced from the following reaction?



- a. an amide
- **b.** an alcohol
- c. an acid
- d. an aldehyde \*e. a ketone
- **9.28.** An oxime can be produced by the reaction of an aldehyde and:
  - \*a. hydroxylamine
- **b.** hydrazine
- c. methylamine

- **d.** phenylhydrazine
- e. semicarbazide
- Which of the following compounds will **NOT** act as a nucleophile in an Aldol reaction? 9.29.



b. CH<sub>3</sub>CCH<sub>3</sub>

(CH<sub>3</sub>)<sub>3</sub>CCC(CH<sub>3</sub>)<sub>3</sub>

- **HCHO** d.
- \*e. c and d

#### 9.30. What reaction will produce the following product?

c. 
$$CH_2CHO$$
 +  $H^+$ 

d. 
$$CH_2CCH_3$$
  $+$   $CH_3CH_2OH$   $+$ 

- 9.31. The reaction of a Grignard reagent with acetaldehyde followed by acid hydrolysis will produce what type of product?
  - **a.** a primary alcohol
- \*b. a secondary alcohol
- c. a tertiary alcohol

d. an acid

- e. a ketone
- 9.32. Which reagents would you use to accomplish the following conversion?

$$\begin{array}{ccc} & & & \text{OH} \\ \parallel & & \parallel \\ \text{CH}_3(\text{CH}_2)_6\text{CCH}_3 & \longrightarrow & \text{CH}_3(\text{CH}_2)_6\text{CHCH}_3 \end{array}$$

- a. NaBH<sub>4</sub>, H<sub>2</sub>O
- **b.** LiAlH<sub>4</sub>, ether; then  $H_3O^+$  **c.**  $H_2$ , Pt

- \*d. all of these
- e. none of these

**9.33.** Which of the following reactions will produce a cyanohydrin?

a. 
$$CH_3CH_2CCH_3 + N_2H_4$$

\*b.  $CH_3CH_2CCH_3 + HCN$ 

\*c.  $CH_3CH_2CCH_3 + CH_3MgCl \xrightarrow{H_3O^+}$ 

d.  $CH_3CH_2CCH_3 + NaBH_4$ 

e.  $CH_3CH_2CCH_3 + CH_3OH \xrightarrow{HCl}$ 

- **9.34.** What Grignard reagent and carbonyl compound react to give benzyl alcohol after treatment with aqueous acid?
  - \*a. phenyl magnesium bromide and formaldehyde
  - **b.** phenyl magnesium bromide and oxirane
  - c. benzaldehyde and methyl magnesium bromide
  - **d.** benzaldehyde and ethyl magnesium chloride
  - e. acetophenone and methyl magnesium chloride
- **9.35.** Which reagent will accomplish the following transformation?

- **9.36.** What is the structure of the aldol produced from reacting propanone with NaOH?
  - a.  $CH_3CH_2CH_2CH_2CH_2CHO$ b.  $CH_3$   $CH_$

## **9.37.** What reactants give the following molecule upon acid hydrolysis?

- a. cyclohexyl magnesium bromide and acetaldehyde
- **b.** cyclohexanol and  $HC \equiv C^- Na^+$
- \*c. cyclohexanone and  $HC \equiv C^- Na^+$
- **d.** cyclohexanecarbaldehyde and  $HC \equiv C^- Na^+$
- e. cyclohexanone and ethenyl magnesium bromide

## **9.38.** The products from

$$\begin{array}{c|c}
 & H_3C \\
 & O \\
 & CH_2
\end{array}$$

$$\begin{array}{c|c}
 & H^+ \\
 & H_2O
\end{array}$$

are

c. 
$$\begin{array}{c} CH_3 \\ C-OH \\ OH \end{array}$$
 +  $CH_2$ = $CH_2$ 

e. no reaction

9.39.

can be prepared from

a. 
$$C$$
— $CH_3$  +  $HMgBr$ , then  $H_3O^+$ 

**b.** 
$$CCH_3 + CrO_3$$

\*d. 
$$CH_3MgBr$$
 +  $CH=O$ , then  $H_3O^+$ 

e. 
$$CH_2MgBr + CH_2=O$$
, then  $H_3O^+$ 

## **9.40.** The product from

$$CH_3CH = CHCH = O \qquad \frac{1. \text{ NaBH}_4}{2. \text{ H}_3O^+}$$

is:

\*a. CH<sub>3</sub>CH=CHCH<sub>2</sub>OH

**b.**  $CH_3CH_2CH=O$ 

c. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH

d. CH<sub>3</sub>CH=CHCO<sub>2</sub>H

e. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H

**9.41.** Which of the following compounds will give a positive silver mirror test (Tollens' test)?

$$\mathbf{b.} \qquad \mathbf{H_{3}C} \longrightarrow \begin{array}{c} \mathbf{O} \\ \mathbf{C} \\ \mathbf{-CH} \end{array}$$

\***d.** 
$$H_3C$$
 CH=O

e. 
$$H_3C$$
  $C$   $C$   $C$   $C$ 

**9.42.** The aldol obtained by treating

$$\bigcirc$$
 CH<sub>2</sub>CH<sub>2</sub>CH=0

with base is:

c. 
$$CH_2CH_2CH$$
— $CH_2CH$ — $CH_2CH$ — $CH_2CH$ — $CH_2CH$ 

d. 
$$CH=O$$
 $CH_2CH-CHCH_2$ 
 $CH=O$ 
 $CH=O$ 

e. 
$$CH_2CH-CH=O$$

## **9.43.** The major product obtained from

$$CH=O$$
 +  $CH_2CH=O$   $Na^+$   $OH$  heat

is:

a. 
$$CH_2CH-CH$$
 $CH=O$ 

**b.** 
$$CH = CH - CH_2$$

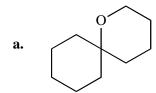
**d.** 
$$CH_2O$$
  $CH_2CH=O$ 

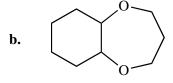
## **9.44.** A reaction sequence that will accomplish the transformation

is:

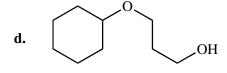
**a.** 1. CH<sub>3</sub>MgBr 2. H<sub>3</sub>O<sup>+</sup>

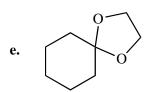
\***b.** 1. CH<sub>3</sub>Li 2. H<sub>3</sub>O<sup>+</sup> 3. CrO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>


**c.** 1. LiAlH<sub>4</sub> 2. H<sub>3</sub>O<sup>+</sup> 3. CH<sub>3</sub>MgBr

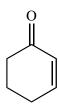

**d.** 1. H<sub>2</sub>, Pd catalyst 2. CH<sub>3</sub>MgBr 3. H<sub>3</sub>O<sup>+</sup>

**e.** 1. CrO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> 2. CH<sub>3</sub>MgBr 3. H<sub>3</sub>O<sup>+</sup>


## **9.45.** The organic product of the reaction


is






\*c. 0

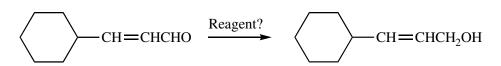




## **9.46.** How many hydrogens in the following compound will be exchanged for deuterium upon reaction with $D_2O$ and an acid catalyst?



**a.** 0


**b.** 2

**c.** 4

\***d.** 5

**e.** 8

## **9.47.** Which reagent can be used to accomplish the following transformation?

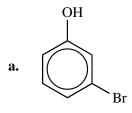


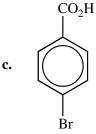
a. pyridinium chlorochromate

\*c. NaBH<sub>4</sub>

e. NaH

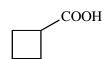
b. Tollens' reagent


**d.**  $H_2$ , Ni


# Chapter 10 Carboxylic Acids and Their Derivatives

## **Nomenclature of Carboxylic Acids and Derivatives**

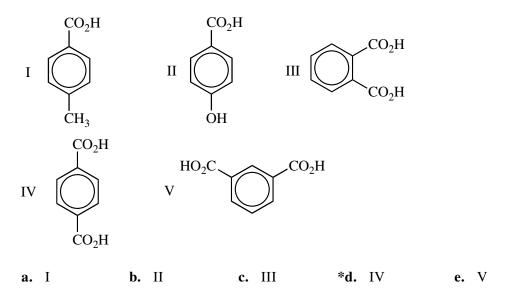
- **10.1.** What is the *common* name for HCOOH?
  - \*a. formic acid
- **b.** acetic acid
- c. propionic acid


- d. oxalic acid
- e. malonic acid
- **10.2.** Which of the following represents *m*-bromobenzoic acid?

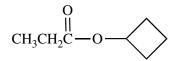




- **10.3.** The IUPAC name for succinic acid is butanedioic acid. What is the structure of succinic acid?
  - a. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H
- **b.** CH<sub>3</sub>CH=CHCO<sub>2</sub>H
- \* $\mathbf{c}$ .  $HO_2CCH_2CH_2CO_2H$


- **d.** CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>3</sub>H
- e.  $HOCH_2CH_2CH_2CO_2H$
- **10.4.** What is a correct name for the following structure?



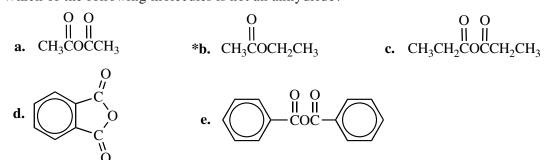

- a. butanoic acid
- c. succinic acid
- e. formyl cyclobutane

- \*b. cyclobutanecarboxylic acid
- d. cyclobutylacetic acid

## 10.5. Which of the following carboxylic acids is terephthalic acid?



## **10.6.** What is the IUPAC name of the following molecule?




- \*a. cyclobutyl propanoate
- **c.** ethyl cyclobutanoate
- e. propanoyl cyclobutyl ether
- **b.** cyclobutyl acetate
- d. propyl cyclobutanoate
- **10.7.** What is the name of the following molecule, (CH<sub>3</sub>)<sub>2</sub>CHCONH<sub>2</sub>?
  - \*a. 2-methylpropanamide
- **b.** 3-methylpropanamide
- c. butyramide

- **d.**  $\alpha$ -methylbutyramide
- e. methylethanamide
- **10.8.** What is the IUPAC name of  $CH_3CO_2CH(CH_3)_2$ ?
  - a. ethyl acetate

**d.** ethyl propanoate

- b. propyl acetatee. dimethyl acetate
- \*c. isopropyl ethanoate
- **10.9.** Which of the following molecules is not an anhydride?



### **10.10.** The IUPAC name for

is

- \*a. potassium 3-bromopropanoate.
- **b.** potassium 2-bromopropanoate.
- **c.** potassium 3-bromopropionate.
- **d.** potassium  $\beta$ -bromopropionate.
- e. potassium  $\gamma$ -bromopropanoate.

## 10.11. The IUPAC name for

$$O$$
 $\parallel$ 
 $(CH_3)_2CBrC \longrightarrow OCH(CH_3)_2$ 

is

- **a.** 2-bromoisopropyl isopropanoate.
- **b.** isopropyl 2-bromoisobutanoate.
- \*c. isopropyl 2-bromo-2-methylpropanoate.
- **d.** 2-bromoisobutanoyl 2-propanoate.
- **e.** isopropyl 2-bromo-3-methylbutanoate.

## **10.12.** The formula for butanoic anhydride is

e. 
$$H_2C \xrightarrow{C} C$$

$$H_2C \xrightarrow{C} O$$

## **Properties of Carboxylic Acids and Derivatives**

10.13. Which of the following molecules would have the highest boiling point?

- \*a. CH<sub>3</sub>CO<sub>2</sub>H
- **b.** CH<sub>3</sub>CH<sub>2</sub>OH
- c. CH<sub>3</sub>CHO

- **d.**  $CH_3CH = CH_2$  **e.**  $HCO_2H$

## **10.14.** Which of the following statements regarding

is false?

- **a.** Rotation around the C—N bond is restricted.
- **b.** The carbonyl group, NH group, and both methyl carbons lie in a plane.
- \*c. The nitrogen is strongly basic.
- **d.** The C—N bond is shorter than the C—N bond in amines.
- **e.** The compound is named *N*-methylacetamide.
- **10.15.** The boiling point of propanoic acid is higher than that of 1-butanol because:
  - **a.** propanoic acid has a higher molecular weight than 1-butanol.
  - **b.** propanoic acid is more soluble in water than 1-butanol.
  - **c.** propanoic acid is a better hydrogen bond donor than 1-butanol.
  - \*d. propanoic acid forms hydrogen bonded dimers and 1-butanol does not.
    - e. 1-butanol forms hydrogen bonded dimers and propanoic acid does not.
- **10.16.** Which of the following compounds undergoes hydrolysis at the fastest rate upon reaction with sodium hydroxide in water?

$$H_3C$$
 OH  $H_3C$  OCH<sub>3</sub>  $H_3C$  NH<sub>2</sub>  $H_3C$  Cl  $H_3C$  SCH<sub>3</sub>

I II III IV V

a. I b. II c. III \*d. IV e. V

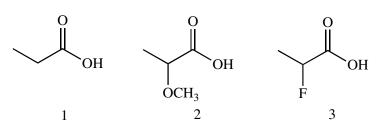
10.17. Which structure best describes the double bond character of the amide bond in acetamide?

## **Acid-Base Chemistry**

- **10.18.** Which of the following molecules is the *weakest* acid?
  - a. CH<sub>3</sub>CH<sub>2</sub>CO<sub>2</sub>H
- **b.** CH<sub>3</sub>CHO
- c. CH<sub>3</sub>CH<sub>2</sub>OH

- \*d. CH<sub>3</sub>C≡CH
- **e.** H<sub>2</sub>O

- **10.19.** Which of the following molecules has the most acidic  $\alpha$ -hydrogen?


  - OH O | || e. CH<sub>3</sub>CHCH<sub>2</sub>CH
- 10.20. The expected order of decreasing acidity for

  - B.  $CH_3CH_2CO_2H$  4.  $CH_2CH_2CO_2H$

is:

- **a.** 2 > 3 > 4 > 1
- \***b.** 2 > 1 > 4 > 3
- **c.** 1 > 2 > 3 > 4

- **d.** 3 > 2 > 1 > 4
- **e.** 1 > 3 > 4 > 2
- **f.** 3 > 4 > 1 > 2
- 10.21. Rank the following according to their relative acidities



- \***a.** 3>2>1
- **b.** 1>2>3
- **c.** 2>3>1
- **d.** 3>1>2
- **e.** 2>1>3

## **Reaction Mechanisms**

## 10.22. Saponification of

is expected to give

a. 
$$(CH_3)_2CH-CH_2CH_3CH_3 + O=C=^{18}O$$

**b.** 
$$(CH_3)_2CHCH = O + CH_3CH_2CH_2^{18}OH$$

c. 
$$(CH_3)_2CHC$$
  $- Na^+ + CH_3CH_2CH_2OH$ 

e. 
$$(CH_3)_2CHC - ^{18}O^- Na^+ + CH_3CH_2CH_2OH_3$$

## **10.23.** The mechanism of saponification is

- a. nucleophilic aromatic substitution.
- **c.** electrophilic aromatic substitution.
- e.  $S_N 1$ .

- \*b. nucleophilic acyl substitution.
- **d.**  $S_N 2$ .

## **10.24.** The following structure

is an intermediate in the reaction of

- **a.** CH<sub>3</sub>CO<sub>2</sub>CH<sub>3</sub> with HCl.
- c. CH<sub>3</sub>CO<sub>2</sub>CH<sub>3</sub> with HOCl.
- e.  $CH_3Cl$  with  $(CH_3)_2C=O$ .
- \*b. CH<sub>3</sub>COCl with CH<sub>3</sub>O<sup>-</sup> Na<sup>+</sup>.
- **d.** CH<sub>3</sub>CH(OCH<sub>3</sub>)<sub>2</sub> with Cl<sub>2</sub>.

10.25. Which structure represents the tetrahedral intermediate in the following reaction?

a. 
$$CH_3 - C - OCH_3$$
 \*b.  $CH_3 - C - OCH_3$  c.  $CH_3 - C - O^- Na^+$ 

d.  $CH_2 - C - OCH_3$  e.  $CH_3 - C - O^- Na^+$ 

d. 
$${}^{\circ}_{CH_2-C-OCH_3}$$
 e.  ${}^{\circ}_{CH_3-C-O^-Na}^{OCH_3}$ 

## Reactions

**10.26.** What is the product of the following reaction sequence?

$$CH_3CH_2CH_2CI \qquad \begin{array}{c} 1) \text{ NaCN} \\ \hline 2) \text{ H}_3O + \end{array}$$

- CH<sub>3</sub>CH<sub>2</sub>CO<sub>2</sub>H **b.** CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CN \*c. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H
- **d.** CH<sub>3</sub>CH<sub>2</sub>CN **e.** CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHO

**10.27.** The product of the following reaction sequence is:

a. 
$$CH_3CH_2CCH_2CH_3$$
 $CH_2CH_3$ 
b. OH
CCH<sub>2</sub>CH<sub>3</sub>
C. CCH<sub>2</sub>CH<sub>3</sub>

10.28. Acid chlorides react with alcohols to give:

- \*a. esters
- **b.** ketones
- c. acetals
- **d.** amides
- e. acids

10.29. Which of the following carbonyl compounds reacts fastest with water?

- a. acid
- **b.** ester
- c. ketone
- \*d. acid chloride e. amide

10.30. Oxidation of

$$H_3C$$
  $\longrightarrow$   $CH_2CH_3$ 

with KMnO<sub>4</sub> gives:

a. 
$$HO_2C$$
  $\longrightarrow$   $CH_2CH_3$ 

**d.** 
$$HO_2C$$
  $\longrightarrow$   $CH_2CO_2H$ 

**10.31.** (CH<sub>3</sub>)<sub>3</sub>CCO<sub>2</sub>H can best be prepared by:

**a.** 
$$(CH_3)_3CCHO \xrightarrow{1. \text{LiAlH}_4}$$

**b.** 
$$(CH_3)_3CBr = \frac{1. \text{ NaCN}}{2. H_3O^+}$$

\*d. 
$$(CH_3)_3CBr$$
  $1. Mg, Et_2O$   $2. CO_2$   $3. H_3O^+$ 

e. 
$$(CH_3)_3C$$
  $CH_3$   $KMnO_4$ 

**10.32.** The product(s) from

$$CH_3CH = CHCO_2CH_2CH_3 \qquad \frac{1. \text{LiAlH}_4}{2. \text{H}_3O^+}$$

are:

- a.  $CH_3CH = CHCO_2H + CH_3CH_2OH$
- **\*b.** CH<sub>3</sub>CH=CHCH<sub>2</sub>OH + CH<sub>3</sub>CH<sub>2</sub>OH
- c. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH + CH<sub>3</sub>CH<sub>2</sub>OH
- **d.** CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
- e.  $CH_3CH = CHCO_2^- Li^+ + CH_3CH_2OH$

10.33. Treatment of CH<sub>3</sub>CH<sub>2</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> with Na<sup>+</sup>OCH<sub>2</sub>CH<sub>3</sub> gives

- a.  $CH_3CH_2CO_2^-Na^+ + CH_3CH_2OH$
- c. CH<sub>3</sub>CH<sub>2</sub>C OCH<sub>2</sub>CH<sub>2</sub>COCH<sub>2</sub>CH<sub>3</sub> + CH<sub>3</sub>CH<sub>2</sub>OH
- \*d.  $CH_3CH_2CCHC OCH_2CH_3 + CH_3CH_2OH CH_3$
- e. no reaction

**10.34.** Benzoic acid cannot be prepared by which one of the following methods?

- a.  $\langle CH_3 \rangle \longrightarrow CH_3$
- **b.** Br  $\frac{1. \text{ Mg, Et}_2\text{O}}{2. \text{ CO}_2}$
- c.  $C\equiv N \xrightarrow{H_3O}^+$
- d.  $\stackrel{\text{O}}{\longleftarrow}$   $\stackrel{\text{II}}{\longleftarrow}$  OCH<sub>3</sub>  $\stackrel{\text{1. NaOH}}{\longrightarrow}$
- \*e. CH<sub>2</sub>OH PCC

## 10.35. The expected product of the reaction

is:

- a. HOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH
- **b.**
- \*c. 0
- d. HOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>C-C-O-C-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH
- e. O CO<sub>2</sub>I

## **10.36.** The product(s) in the reaction

$$CH_3-CH_2-C-NH_2$$
 LiAlH<sub>4</sub>

are:

- a.  $CH_3-CH_2-OH$
- \***b.**  $CH_3 CH_2 CH_2 NH_2$
- c.  $CH_3-CH_2-CH_2-OH + NH_3$
- **d.**  $CH_3-CH_2-C-N-C-CH_2-CH_3$
- e.  $CH_3-CH_2-CH \equiv N$

## 10.37. Propyl ethanoate can be prepared by the reaction of

- **a.** propanoic acid with ethanol.
- **b.** ethanoic acid with isopropanol.
- \*c. ethanoyl chloride with propanol.
- **d.** propanoyl chloride with ethanol.
- e. propanoic anhydride with ethanol.

# Chapter 11 Amines and Related Nitrogen Compounds

## **Nomenclature of Amines**

**11.1.** *Sec*-butylamine is classified as a(n) \_\_\_\_\_ amine.

**\*a.** 1°

**b.** 2°

**c.** 3°

**d.** quaternary salt

e. aromatic

**11.2.** Which of the following are tertiary amines?

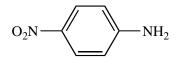
CH<sub>3</sub>
|
1. H<sub>3</sub>C-C-NH<sub>2</sub>
|
CH<sub>3</sub>

2. H<sub>3</sub>C-N | CH<sub>3</sub> 3. H<sub>3</sub>C NH<sub>2</sub>

4. N CH<sub>3</sub>

5. O CH<sub>3</sub>
CH
CH

**a.** 1 and 3


**b.** only 5

**c.** 1, 2, 3, and 4

\***d.** 2 and 4

**e.** 1 and 2

11.3. The structure below can be named in the following manner:



a. 4-nitrocyclohexanamine

**b.** *p*-nitroaniline

**c.** *o*-nitroaniline

**d.** 4-nitrobenzenamine

**\*e.** b or d

11.4. The structure that corresponds to N-ethyl-2,3-dimethyl-2-hexanamine is

$$\begin{array}{ccccc} CH_3 CH_3 & CH_3 \\ & & & & CH_3 \\ CH_3-C-CHCH_2CH_3 & \textbf{d.} & CH_3-CH-CHCH_2CH_2CH_3 \\ & & & & & & \\ NHCH_2CH_3 & & & & N(CH_2CH_3)_2 \end{array}$$

e. 
$$CH_3 NHCH_2CH_3$$
  
 $CH_3-C-CHCH_2CH_2CH_3$   
 $CH_3$ 

Which of the following compounds is a tertiary amine? 11.5.

$$\mathbf{c}$$
 CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>

\*d. 
$$CH_3$$
 $NCH_3$ 

## **Properties of Amines**

11.6. Which of the following molecules has the highest boiling point?

- **a.** methylamine
- **b.** ethane

\*c. methyl alcohol

- **d.** dimethyl ether
- e. formaldehyde

To separate a mixture of p-toluidine and p-nitrotoluene dissolved in ether,

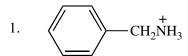
- \*a. extract the ether solution with aqueous HCl and treat the water layer with aqueous NaOH.
- **b.** extract the ether solution with aqueous NaOH and treat the water layer with aqueous HCl.
- c. extract the ether solution with water and treat the water layer with aqueous NaOH.
- **d.** extract the ether layer with aqueous HCl and treat the ether layer with aqueous NaOH.
- e. extract the ether solution with aqueous HCl and treat the ether layer with aqueous HCl.

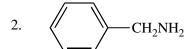
- 11.8 Which of the following statements about aliphatic amines is false?
  - **a.** The nitrogen in aliphatic amines is  $sp^3$ -hybridized.
  - \*b. Aliphatic 3° amines with three different groups on nitrogen can be resolved.
  - c. Aliphatic amines can be hydrogen bond donors.
  - **d.** Aliphatic amines can be hydrogen bond acceptors.
  - **e.** The non-bonded lone pair in an aliphatic amine is more basic than the non-bonded lone pairs in ethers.

## **Acid-Base Chemistry**

- **11.9.** Which compound is the strongest base?
  - \*a. CH<sub>3</sub>NH<sub>2</sub>
- **b.** CH<sub>3</sub>CO<sub>2</sub>H
- c. CH<sub>3</sub>CHO
- d. CH<sub>3</sub>OH
- e.  $C_6H_5NH_2$

- **11.10.** Which of the following amines is the most basic?
  - a. methylamine
- \*b. dimethylamine
- c. ammonia


d. aniline


- e. N-methylaniline
- 11.11. The order of decreasing  $pK_a$ s of the corresponding ammonium ions of
  - 1. NH<sub>3</sub> 2. CH<sub>3</sub>NH<sub>2</sub>
- 3. NH<sub>2</sub>
- 4. Cl—NH<sub>2</sub>

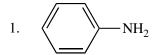
is:

- **a.** 1 > 2 > 3 > 4
- **b.** 3 > 4 > 2 > 1
- c. 4 > 3 > 2 > 1

- \***d.** 2 > 1 > 3 > 4
- **e.** 4 > 3 > 1 > 2
- 11.12. The order of decreasing acidity of








is:

- **a.** 1 > 2 > 3
- \***b.** 3 > 1 > 2
- **c.** 2 > 1 > 3

- **d.** 3 > 2 > 1
- **e.** 2 > 3 > 1

## 11.13. The order of increasing basicity of



3. 
$$H_3CO$$
  $\sim$   $NH_2$ 

2. 
$$\left\langle \right\rangle$$
 NH<sub>2</sub>

4. 
$$O_2N$$
  $NH_2$ 

is:

- **a.** 1 < 2 < 3 < 4
- **b.** 2 < 3 < 1 < 4
- **c.** 4 < 3 < 2 < 1

- **d.** 4 < 3 < 1 < 2
- \*e. 4 < 1 < 3 < 2

## **Reaction Mechanisms**

- **11.14.** When ammonia (NH<sub>3</sub>) reacts with methyl bromide (CH<sub>3</sub>Br) to give methylamine, the ammonia:
  - a. acts as an electrophile

- b. acts as a Lewis acid
- c. acts as a Bronsted-Lowry acid
- d. acts as a Bronsted-Lowry base
- \*e. acts as a nucleophile in an  $S_N$ 2 reaction
- 11.15. What is the mechanism for the intramolecular alkylation shown below?

$$\begin{array}{c|c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

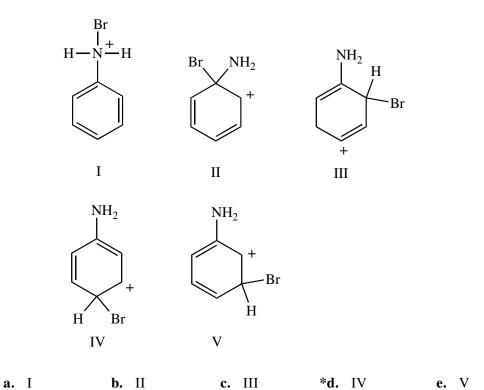
\*a.  $S_N 2$ 

- **b.**  $S_N 1$
- c. nucleophilic acyl substitution
- d. nucleophilic addition

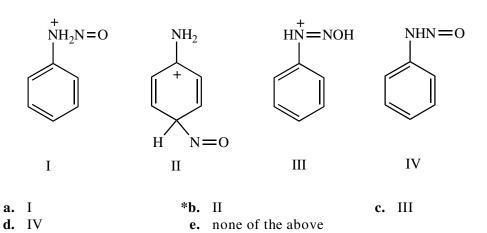
- e. electrophilic addition
- 11.16. The mechanism by which acylation of an amine with an acid chloride takes place is:
  - \*a. nucleophilic acyl substitution
- **b.** electrophilic aromatic substitution

c. nucleophilic addition

- d. electrophilic addition
- e. nucleophilic aromatic substitution
- 11.17. The alkylation of an amine with an alkyl halide takes place by the following mechanism:
  - $a. S_N 1$

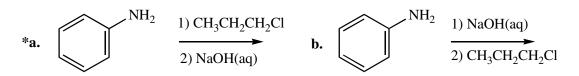

\***b.**  $S_{N}2$ 

c. electrophilic addition


**d.** E1

**e.** E2

**11.18.** What structure represents a cationic intermediate in the electrophilic aromatic bromination of aniline?




**11.19.** Which of the following is not an intermediate in the diazotization of aniline using nitrous acid?



## Reactions

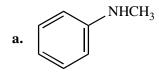
**11.20.** C<sub>6</sub>H<sub>5</sub>NHCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> can best be prepared as follows:



c. 
$$\begin{array}{c} \text{NH}_2 \\ \hline 2) \text{ CH}_3\text{Cl} \\ \hline 3) \text{ CH}_3\text{CH}_2\text{Cl} \\ \end{array}$$
 d. 
$$\begin{array}{c} \text{NH}_2 \\ \hline 2) \text{ CH}_3\text{CH}_2\text{CH}_2\text{Br} \\ \hline \end{array}$$

e. 
$$\begin{array}{c|c}
NH_2 & 1) \text{ Sn, HCl} \\
\hline
2) \text{ CH}_3\text{CH}_2\text{CH}_2\text{Br} \\
3) \text{ NaOH(aq)}
\end{array}$$

- **11.21.** Reacting aniline, C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>, with a primary alkyl halide will produce a(n):
  - \***b.**  $2^{\circ}$  amine a. 1° amine
- $\mathbf{c.}$  3° amine
- **d.** amide
- e. imine
- 11.22. An imine is produced when a ketone or aldehyde reacts with:
  - a. methyl alcohol
- **b.** Zn(Hg), HCl
- \*c. an amine


- **d.** an amide
- e. HCN
- **11.23.** What is the name of the product of the following reaction?

- a. chlorobenzene
- **b.** chloroaniline
- \*c. anilinium chloride

- **d.** o-chloroaniline
- e. N-chloroaniline
- 11.24. What is the stereochemical relationship of the *products* formed by reacting racemic lactic acid with (S)-1-phenylethylamine?
  - a. enantiomers
- **b.** meso compounds
- c. racemic mixture

- \*d. diastereomers
- e. geometric isomers

## 11.25. Which of the following amines can be converted to an aryl diazonium salt?



$$\mathbf{b.} \quad \boxed{ \qquad \qquad N(CH_3)_2}$$

c. 
$$NO_2$$

## 11.26. Which molecule is known as an azo compound?

$$\mathbf{b}$$
.

## 11.27. What is the name of the product formed by reacting CuBr and HBr with benzenediazonium chloride?

- \*a. bromobenzene
- **b.** chlorobenzene
- **c.** *o*-bromoaniline

- **d.** *m*-bromoaniline
- **e.** *m*-chloroaniline
- 11.28. What reacts with benzenediazonium chloride to produce benzonitrile?
  - a. HONO

**b.** Li,  $NH_3$ 

c. NaBH<sub>3</sub>CN

- \*d. KCN, Cu<sub>2</sub>CN<sub>2</sub>
- e. LiAlH<sub>4</sub>, ether
- 11.29. What type of products are formed by diazo coupling reactions?
  - a. meso compounds

\*b. azo compounds

c. diazonium salts

d. quaternary ammonium salts

e. racemic mixtures

## 11.30. Which reaction will produce a quaternary ammonium salt?

a. 
$$CH_2CI$$
+  $CH_3NH_2$ 
?

CH\_2CI
+  $(CH_3)_2NH$ 
?

c. 
$$(CH_3)_3CBr$$
 +  $CH_3NH_2$   $\longrightarrow$  ?

\***d.** 
$$CH_3CH_2I$$
 +  $(CH_3)_3N$   $\longrightarrow$  ?

e. 
$$(CH_3)_2CHBr + (CH_3)_2NH \longrightarrow$$
 ?

## 11.31. What is the final product for the following sequence of reactions?

NO<sub>2</sub> 1) SnCl<sub>2</sub>, HCl 
$$\stackrel{}{\underset{2) \text{ NaNO}_2, \text{ HCl}}{\longrightarrow}}$$
 ?

\*a. 
$$\bigcirc$$
 b.  $\bigcirc$  C.  $\bigcirc$  d.  $\bigcirc$  e.  $\bigcirc$ 

## **11.32.** Which of the following reaction sequences will convert *p*-bromoaniline to *p*-bromobenzoic acid?

$$\begin{array}{c}
NH_2 \\
Br
\end{array}$$

$$\begin{array}{c}
CO_2H \\
Br$$

- a. 1. NaNO<sub>2</sub>, HCl 2. CH<sub>3</sub>CO<sub>2</sub>H
- **b.** 1. NaNO<sub>2</sub>, HCl 2. Mg, ether 3. CO<sub>2</sub>, H<sub>3</sub>O<sup>+</sup>
- c. 1. CH<sub>3</sub>Cl, AlCl<sub>3</sub> 2. KMnO<sub>4</sub>
- **d.** 1. HCl 2. CH<sub>3</sub>COCl 3. NaCN, H<sub>3</sub>O<sup>+</sup>
- \*e. 1. NaNO<sub>2</sub>, HCl 2. KCN, Cu<sub>2</sub>CN<sub>2</sub> 3. H<sub>3</sub>O<sup>+</sup>

## 11.33. The following reaction sequence will produce:

NO<sub>2</sub> 1. SnCl<sub>2</sub>, HCl 
$$\stackrel{}{\longrightarrow}$$
 ? 2. NaOH, H<sub>2</sub>O 3. CH<sub>3</sub>CH<sub>2</sub>Br

a. 
$$\stackrel{\text{NH}_2}{\longrightarrow}$$
 Br  $\stackrel{\text{NH}_2}{\longrightarrow}$  b.  $\stackrel{\text{NH}_2}{\longrightarrow}$  \*c.  $\stackrel{\text{NHCH}_2\text{CH}_3}{\longrightarrow}$  d.  $\stackrel{\text{CH}_2\text{CH}_3}{\longrightarrow}$  e.  $\stackrel{\text{CH}_2\text{CH}_3}{\longrightarrow}$ 

## **11.34.** The product(s) of

$$CH_3$$
 +  $CH_3CH_2I$   $\longrightarrow$ 

are:

**b.** 
$$CH_3$$
 +  $CH_3I$   $CH_2CH_3$ 

c. 
$$CH_2CH_3$$
 +  $2 CH_3I$   $CH_2CH_3$ 

**d.** 
$$CH_3CH_2$$
  $CH_3$  +  $HI$   $CH_3$ 

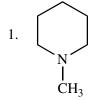
e. 
$$CH_3$$
  $CH_2CH_3$   $CH_3$   $I$ 

## **11.35.** Aniline

$$\sim$$
 NH<sub>2</sub>

is best prepared via:

a. 
$$Cl + NH_3$$


**b.** 
$$\longrightarrow$$
 + NH<sub>3</sub>  $\longrightarrow$ 

c. 
$$\frac{H_2}{\text{catalyst}}$$

**d.** 
$$NO_2$$
  $KMnO_4$ 

\*e. 
$$\frac{H_2}{\text{catalyst}}$$

## 11.36. The amines that can be acylated by acetic anhydride are



3. 
$$\begin{array}{ccc} H_2C - CH_2 \\ | & | & | \\ (CH_3)_2N & N(CH_3)_2 \end{array}$$



- a. only 4
- \*d. 2 and 4

- **b.** 1, 2, 3, and 4
- **e.** only 2

**c.** 1 and 3

## **11.37.** The product(s) from the reaction

$$NH_2$$
 + HONO + HCl  $\xrightarrow{0^{\circ}C}$ 

are:

a. 
$$Cl + N_2 + 2 H_2O$$

\***b.** 
$$N_2^+ Cl^- + 2 H_2 Cl^-$$

c. 
$$O=N$$
  $\longrightarrow$   $NH_2 + H_2O + HCI$ 

**d.** OH + 
$$N_2$$
 +  $H_3O^+Cl^-$ 

e. 
$$\sim$$
 NHN=O + H<sub>2</sub>O + HCl

## **11.38.** *m*-Dibromobenzene can be prepared in good yield by the sequence

a. 
$$\frac{Br_2}{FeBr_3}$$
b. 
$$\frac{HBr}{Br}$$
\*c. 
$$\frac{NaNO_2}{HCl}$$

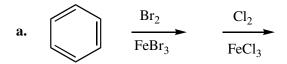
$$\frac{HBr}{Cu_2Br_2}$$
d. 
$$\frac{2 HBr}{NH_2}$$
e. 
$$\frac{Br_2}{AlBr_3}$$

## **11.39.** The product(s) from the reaction sequence

$$\begin{array}{c|c} & OH \\ \hline \\ & OH \\ \\ & OH \\ \hline \\ & OH \\ \\ & OH \\ \hline \\ & OH \\ \\ & OH \\ \hline \\ & OH \\ \\ & OH \\ \hline \\ & OH \\ \\ & OH \\ \hline \\ & OH \\ \\ & OH \\ \hline \\ & OH \\ \\ & OH \\ \hline \\ & OH \\ \hline \\ & OH \\ \hline \\ & OH \\ \\ & OH \\ \hline \\ & OH \\ \\ &$$

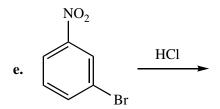
is (are):

c.


**b.** Br 
$$\longrightarrow$$
 CH<sub>2</sub>  $\longrightarrow$  OH + N<sub>2</sub>

$$HO$$
  $HN$   $+$   $H_2O$   $CH_3$ 

**d.** 
$$H_3C$$
  $\longrightarrow$   $NH_2$  +  $HBr$ 


\*e. Br
$$N=N$$
 $CH_3$ 

**11.40.** *m*-Chlorobromobenzene can be prepared in good yield by the sequence:



\*c. 
$$\frac{SnCl_2}{HCl}$$
  $\frac{HONO}{0^{\circ}C}$   $\frac{HCl}{Cu_2Cl_2}$ 

d. 
$$\frac{Br_2}{FeBr_3}$$



11.41. The reaction of a 2° amine with nitrous acid gives:

- a. a quaternary ammonium salt.
- \*b. a nitrosamine.

c. A diazonium salt

d. an azo dye

e. a nitro compound