UNIT IV

GUYTON AND HALL Textbook of Medical Physiology TWELFTH EDITION

Chapter 17:

Local and Humoral Control of Tissue Blood Flow

Overall Objectives

- Know what factors affect tissue blood flow
- Describe the vasodilator and oxygen demand theories
- Know mechanisms of autoregulation
- Describe how angiogenesis occurs
- Know how various humoral factors affect blood flow

Local Control of Blood Flow

- Each tissue controls its own blood flow in *proportion to its needs*
- Tissue needs include
 - 1) Delivery of oxygen to tissues
 - 2) Delivery of *nutrients* such as glucose, amino acids, etc.
 - 3) Removal of carbon dioxide hydrogen and other *metabolites* from the tissues
 - 4) Transport various *hormones* and other substances to different tissues
- Flow is closely related to metabolic rate of tissues

Variations in Tissue Blood Flow

	Per cent	ml/min	100 gm
Brain	14	700	50
Heart	4	200	70
Bronchi	2	100	25
Kidneys	22	1100	360
Liver	27	1350	95
Portal	(21)	(1050)	
Arterial	(6)	(300)	
Muscle (inactive state)	1	5750	4
Bone	5	250	3
Skin (cool weather)	6	300	3
Thyroid gland	1	50	160
Adrenal glands	0	.525	300
Other tissues	3.5	175	1.3
Total	100.0	5000	200

- Increases in *tissue metabolism* lead to increases in blood flow
- Decreases in *oxygen availability* to tissues increases tissue blood flow
- Two major theories for local blood flow are
 - 1) The vasodilator theory
 - 2) Oxygen demand theory

Relationship Between Pressure, Flow, and Resistance

- $Q = \Delta P/R$
- *Flow* (Q) through a blood vessel is determined by:
 - 1) The *pressure difference* (ΔP) between the two ends of the vessel
 - 2) Resistance (R) of the vessel

Effect of Tissue Metabolic Rate on Tissue Blood Flow

• Vasodilators: Adenosine, CO2, Lactic acid, ADP compounds, Histamine, K ions, H ions

Effect of Tissue Oxygen Concentration on Blood Flow

Oxygen Demand Theory for Blood Flow Control

Autoregulation of Blood Flow

Autoregulation-Ability of a tissue to maintain blood flow relatively constant over a wide range of arterial pressures

Blood Flow Autoregulation Theories

- *Metabolic theory* suggests that as arterial pressure is decreased, oxygen or nutrient delivery is decreased resulting in release of a vasodilator
- *Myogenic theory* proposes that as arterial pressure falls the arterioles have an intrinsic property to dilate in response to decreases in wall tension
- Certain tissues have *other mechanisms* for blood flow control the kidneys have a feedback system between the tubules and arterioles and the brain blood flow is controlled by carbon dioxide and hydrogen ion conc.

Laplace's Law: Myogenic mechanism

TENSION=PRESSUREXRADIUS(dynes/cm)(dynes/cm^2)(cm)

Long-term Regulation of Blood Flow

- Long-term regulatory mechanisms which control blood flow are more effective than acute mechanism
- Long-term local blood flow regulation occurs by changing the degree of vascularity of tissues (*size and number of vessels*)
- *Oxygen* is an important stimulus for regulating tissue vascularity

Long-term Regulation of Blood Flow

Angiogenesis

- Angiogenesis is the growth of new blood vessels
- Angiogenesis occurs in response to angiogenic factors released from
 - 1) Ischemic Tissue
 - 2) Rapidly growing tissue
 - 3) Tissue with high metabolic rates

• Most angiogenic factors are small peptides such as Vascular endothelial cell growth factors (VEGF), fibroblast growth factor (FGF), and angiogen

Humoral Regulation of Blood Flow: Acute

- Vasoconstrictors
 - Norepinephrine and epinephrine Angiotensin Vasopressin Endothelin
- Vasodilator agents

 Bradykinin
 Serotonin
 Histamine
 Prostaglandins
 Nitric oxide

YOU SHOULD KNOW

- ✓ Know what factors affect tissue blood flow
- Describe the vasodilator and oxygen demand theories
- ✓ Know autoregulation mechanisms
- ✓ Describe how angiogenesis occurs
- Know how various humoral factors affect blood flow