

Amino Acids

Name		Structure
Glycine (Gly)	* R chain= Hydrogen "Non polar" * Achiral Amino acid *Polar amino acid *the simplest and smallest amino acid *derivative of acetic acid; it can also be considered a derivative of amino ethane	COOH H ₂ N-C-H H
	Non-polar	
Alanine(Ala)	R chain= CH3 *Aliphatic *second simplest amino acid	$COOH$ H_2N-C-H CH_3
Valine(Val)	*Baranched,aliphatic *Nonpolar amino acids.	COOH H ₂ N-C- H CH CH ₃ CH ₃ Valine (Val)
Leucine (Leu)	* Baranched ,aliphatic nonpolar amino acids. *branching occurs in its R group at gamma-carbon	COOH H ₂ N-C- H CH ₂ CH ₃ CH ₃

Isoleucine(Ile)	* Baranched aliphatic nonpolar amino acids. *branching occurs at betacarbon	COOH H ₂ N-C-H CH CH ₃ CH ₂ CH ₃
Methionine (Met)	*thioether (RSR) *Methionine can react to form S-Adenosyl-L- Methionine (SAM), which serves as a methyl donor in reactions	COOH H ₂ N-C-H C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C

Proline (Pro)	*only cyclic amino acid *rigid molecule *nitrogen in the amino group within the backbone is a secondary nitrogen	COOH H ₂ N-C-H CH ₂ -CH ₂
Phenylalanine (Phe)	*basically an alanine amino acid with its R group attached to a phenyl group (benzene ring). * highly hydrophobic	COOH H ₂ N-C-H CH ₂ Phenylalanine (Phe)
Tryptophan (Trp)	*Tryptophan is the most hydrophobic amino acid residue *Tryptophan contains a double ring structure which contains nitrogen. *The largest amino acid *R group: indole group	COOH H2N-C-H CH2 Tryptophan (Trp)
	Positively charged(Basic)	

Lysine (Lys)	*have relatively long side chains that terminate with groups that are positively charged *terminal group is an amino group **have relatively long side	COOH H ₂ N-C-H (CH ₂) ₄ NH ₂ Lysine (lys)*
Arginine (Arg)	chains that terminate with groups that are positively charged *the terminal group is called a Guanidinium group	H ₂ N-C-H (CH ₂) ₃ NH HN-C NH ₂ Arginine (arg)*
Histidine (His)	*R group: contains imidazole	Hadden that " This is the Nitrogen atom that will get protonated and carry the positive charge.
	Negatively charged	**These amino acids are often
	(Acidic)	called Aspartate and Glutamate
	*	when they are charged/ionized.
Aspartic Acid (Asp)	* contain a carboxyl group	COOH H ₂ N-C-H CH ₂ COOH Aspartic acid (asp)
Glutamic acid (Glu)	* contain a carboxyl group *Glutamic acid has a larger size because its terminal (R) group is a longer chain.	COOH H ₂ N-C-H CH ₂ CH ₂ COOH Glutamic acid (glu)
	Polar, hydrophilic,	
	neutral amino acids	
	reactive	
Serine (Ser) Threonine (Thr)	*Their R groups contain a hydroxyl group (polar group)	COOH H ₂ N-C-H CH ₂ OH Serine (ser) COOH H ₂ N-C-H H ₂ N-C-H CH ₃ Threonine (thr)*

Cysteine (Cys)	*It contains a sulfhydryl (thiol because it is terminal) group which is also a polar reactive group.	COOH H ₂ N-C-H CH ₂ SH Cysteine (cys)
Glutamine (Gln) Asparagine (Asn)	* They are uncharged polar derivatives of Glutamate and Aspartate, which are negatively charged amino acids *Each contains a terminal Carboxamide group in place of a Carboxyl group.	COOH H ₂ N - C - H CH ₂ COOH Asparic acid (asp) Asparagine (asn) COOH H ₂ N - C - H CH ₂ COOH H ₂ N - C - H CH ₂ CH ₂ CH ₂ CH ₂ COOH COH ₂ COOH COH ₂ CH ₂ COOH CH ₂ COOH CONH ₂
Tyrosine (Tyr)	It is derived from phenylalanine, which is hydrophobic. It has a polar and a reactive aromatic ring (with a hydroxyl group attached)	COOH H ₂ N-C-H CH ₂ Phenylalanine (phe)* COOH H ₂ N-C-H CH ₂ OH Tyrrosine (tyr)