

Carbohydrates Metabolism

Dr. Diala Abu-Hassan

Review of Carbohydrates

Digestion and absorption of carbohydrates

Suggested Readings:

- 1: Lippincott's Illustrated reviews: Biochemistry
- 2: Marks' Basic Medical Biochemistry

Examples of monosaccharides found in

* The simplest Ketone Sugar $\rightarrow \rightarrow$ dihydroxy acetone. \rightarrow NO chiral center.

* The simplest Aldose sugar \rightarrow Glycer Aldehyde \rightarrow has a chiral center.

human

Generic names

- 3 carbons: trioses
- 4 carbons: tetroses
- 5 carbons: pentoses
- 6 carbons: hexoses
- 7 carbons: heptoses
- 9 carbons: nonoses

Examples

- Glyceraldehyde The simplese Aldose Sugar.
- Erythrose
- Ribose
- Glucose
- Sedoheptulose
- Neuraminic acid

Sugars have <u>Isomers</u>

Epimers are isomers:

Changing the orientation of one hydroxyl group will produce a different sugar

Glucose and Fructose are isomers

* enatumers? \rightarrow mirror images.] same molecule $\left(\begin{array}{c} \\ \\ \\ \end{array} \right) \right)$ in our body. * Diastereomers \rightarrow NOT mirror images] some groups ar reversed and some are **NOT**.] different compared and some are **NOT**.]

Enantiomers

Alpha and Beta Sugars (Anomers)

Disaccharides

Sugars made of two monosaccharide units joined by a glycosidic bond

Glycosidic bond is cleaved by glycosidase enzyme

Starch Digestion

Mucosal cell membrane-bound enzymes

ENZYME	Bond Cleaved	Substrates
Isomaltase	$\alpha 1 \rightarrow 6$	Isomaltose
Maltase	$\alpha 1 \rightarrow 4$	Maltose
Sucrase	$\alpha 1 \rightarrow 2$	Sucrose to Fructose and glucose.
Lactase	$\beta 1 \rightarrow 4$	Lactose and glucose.
Trehalase	$\alpha 1 \rightarrow 1$	Trehalose Glu 7-77 Glu. -> NON Reducing. -> NON Reducing. -> Jobs
Exoglycosidase the terminal bonds. (Glucoamylase)	$\alpha 1 \rightarrow 4 \text{ and}$ $\alpha 1 \rightarrow 6$	Starch

Sucrase-isomaltase complex

FIG. 27.5. The major portion of the sucrase–isomaltase complex, containing the catalytic sites, protrudes from the absorptive cells into the lumen of the intestine. Other domains of the protein form a connecting segment (stalk) and an anchoring segment that extends through the membrane into the cell. The complex is synthesized as a single polypeptide chain that is split into its two enzyme subunits extracellularly. Each subunit is a domain with a catalytic site (distinct sucrase–maltase and isomaltase–maltase sites). In spite of their maltase activity, these catalytic sites are often called just *sucrase* and *isomaltase*.

Clinical Hint: Abnormal Degradation of disaccharides

1. Sucrase-isomaltase deficiency:

Causes:

- Genetics -> mutation -> different levels. -> depends on -> the socation of the mutation.

- Variety of intestinal diseases Deat

- Malnutrition -> NO substrate for the enzymes.
- Injury of mucosa i.e by drugs
- Severe diarrhea , sugars, food will not stay in the intestin by the same to the to t

less ensumes and

Absorption will be allested.

Clinical Hint: Abnormal Degradation of disaccharides

here

2. Lactase deficiency: ¹/₂ world's population

Na⁺ monosaccharide cotranspoerter system (SGLT)

Against concentration gradient (requires energy).

• For glucose and galactose absorption

some examples of Glues.]

All are membrane proteins except for Glut 7.

Table 27.5 Properties of the GLUT 1 to GLUT 5 Isoforms of the Glucose Transport Proteins

Transporter	Tissue Distribution	Comments
GLUT 1 * in barriers *	Human erythrocyte Blood-brain barrier Blood-retinal barrier Blood-placental barrier	Expressed in cell types with barrier functions; a high-affinity glucose transport system
→ NON - specific → All sugars can enter. → high capacity "Past". → low affinity of Gdu.	Liver	A high-capacity, low-affinity transporter
لوکارت عالیه کان هو ما بیافد غیر ال ۲۵٬۵۰۰ ، Glucose	Kidney Paparaatia <i>R</i> call	May be used as the glucose sensor in
galactose	Pancreatic p-cell	the particleas
and fructose	mucosa cells	(Basolateral surface)
GLUT 3	Brain (neurons)	Major transporter in the central nervous
		system, a high-affinity system
GLUT 4	Adipose tissue insulin binds to a	Insulin-sensitive transporter to the
Sk He		presence of insulin, the number of
	Heart muscle	GLUT 4 transporters increases on the
	the gene expression of mo genes→ one of them is Grins # diversion	cell surface: a high-affinity system
GLUT 5	رہ متازیفہ) ان ^{سابع} اللہِ ن ^{اری} Intestinal epithelium	This is actually a fructose transporter
Fructose		Na independent
	OPA	ind independent
GLUT 7 Found on ER membrane.	Glucogenic tissues	at endoplasmic reticulum membrane

Insulin stimulates transport of glucose into muscle and adipose tissues