

Metabolism of lipids V: Glycerophospholipids

Prof. Mamoun Ahram

Resources

- This lecture
- Lippincott's Biochemistry, Ch. 17

Phosphatidic acid

Classification of Glycerophospholipids

- Phosphatidic acids
- Phosphatidylcholine (lecithin)
- Phosphatidylethanolamine
- Phosphatidylserine
- Phosphatidylinositol
- Cardiolipin

Synthesis

- Location: smooth ER
 - Except for ether lipids
- Activation by CDP is necessary. Either:
 - CDP-DAG (glycerol, inositol, serine)
 - CDP-alcohol (choline, ethanolamine)

Sources of choline and ethanolamine

- Choline and ethanolamine are
 - obtained from diet,
 - synthesized, or
 - re-cycled from the turnover of pre-existing phospholipids
- Diet is still essential since demand > supply

Synthesis of ph-choline and ph-ethanolamine

- Choline or ethanolamine are phosphorylated by kinases, then activated by transferases to form, CDP-choline or CDP-ethanolamine.
- Choline phosphate or ethanolamine phosphate is transferred from the nucleotide (releasing CMP) to DAG.

Synthesis of ph-choline from ph-ethanolamine

 Methyl groups are donated by Sadenosylmethionine to convert PE to PC by PE methyltransferase.

Phosphatidylethanolamine N – methyltransferase (PEMT)

Synthetic pathways for and from ph-serine

- The liver requires another mechanism to produce PC because it uses it to make bile and other plasma lipoproteins.
- PS is decarboxylated to PE by PS decarboxylase (PSD) or exchanged from PE or PC by PS synthases (PSS).

Summary of synthesis pf PE, PC, and PS

Signaling by PIP2 products

GPI for membrane attachment

- Glycosyl phosphatidylinositol (GPI) attaches proteins to the plasma membrane.
- Advantage: lateral mobility
 - Example: lipoprotein lipase

Phosphatidylglycerol and cardiolipin

- Phosphatidylglycerol is synthesized from CDP-DAG and glycerol 3-phosphate.
- Cardiolipin is synthesized by the transfer of DAG from CDP-DAG to a pre-existing molecule of phosphatidylglycerol.

R₂COCH

Phosphatidic acid

Ether glycerophospholipids

The FA at carbon 1 is replaced by an unsaturated alkyl group attached by an ether linkage.

- Plasmalogens: PhosphatidAlethanolamine (abundant in nerve tissue, is similar in structure to phosphatidylethanolamine.
 - Phosphatidalcholine (abundant in heart muscle) is another significant ether lipid in mammals.

- Platelet-activating factor has a saturated alkyl group in an ether link to carbon 1 and an acetyl residue at carbon 2 of the glycerol backbone.
 - Prothrombotic and inflammatory factor

Surfactants

Water

- Surfactants are a complex mixture of lipids (90%) and proteins (10%) that make the extracellular fluid layer lining the alveoli and are secreted by type II pneumocytes in the lungs.
- Dipalmitoylphosphatidylcholine (DPPC) is the major lipid in surfactants.
- Surfactants serve to decrease the surface tension of the fluid layer allowing reinflation of alveoli and preventing alveolar collapse (atelectasis).
- Respiratory distress syndrome (RDS) in preterm infants is associated with insufficient surfactant production and/or secretion.
- Prenatal administration of glucocorticoids shortly before delivery to induce expression of specific genes.

Degradation of Phospholipids

This is different than what's in the textbook

PHOSPHOLIPASE A2

- Phospholipase A₂ is present in many mammalian tissues and pancreatic juice. It is also present in snake and bee venoms.
- Pancreatic secretions are especially rich in the *phospholipase* A₂ proenzyme, which is activated by *trypsin* and requires bile salts for activity.
- Phospholipase A₂, acting on phosphatidylinositol, releases arachidonic acid (the precursor of the eicosanoids).
- Phospholipase A₂ is inhibited by glucocorticoids (for example, cortisol).

PHOSPHOLIPASE A_1 • Phospholipase A_1 is present in many mammalian tissues. A_1 A_2 $CH_2-O-C-R_1$ $B_2-C-O-CH$ $CH_2-O-C-R_1$ D_1 $CH_2-O-C-R_1$ D_2 $CH_2-O-C-R_1$ $CH_2-O-C-R_1$ D_2 $CH_2-O-C-R_1$ $CH_2-O-C-R_1$ $CH_2-O-C-R_1$

PHOSPHOLIPASE D

 Phospholipase D cleaves the head group generating PA, followed by the action of a phosphohydrolase that generates DAG, which is a signaling molecule.

PHOSPHOLIPASE C

- Phospholipase C is found in liver lysosomes and the α-toxin of clostridia and other bacilli.
- Membrane-bound phospholipase C is activated by the PIP₂ system and, thus, plays a role in producing second messengers.

