

Lypo Jiti:	Acute inflammation	thronic inflammation
onset	fast: minutes or	slow: days
cellular infiltrate	mainly neutrophilis	macrophages; monocytes , lymphocytes; plasma cells
fibrosis	usually mild 8	may be severe & progressive
local 8 sys. signs	prominent	less

Disorders	Cells and Molecules Involved in Injury			
Acute				
Acute respiratory distress syndrome (ARDS)	Neutrophils			
Asthma	Eosinophils; IgE antibodies			
Glomerulonephritis *Can be acute or chronic	Antibodies and complement; neutrophils, monocytes			
Septic shock	Cytokines			
Chronic				
Arthritis	Lymphocytes, macrophages;	antibodies?		
Asthma	Eosinophils; IgE antibodies	Eosinophils; IgE antibodies		
Atherosclerosis	Macrophages; lymphocytes	And Platelets		
Pulmonary fibrosis	Macrophages; fibroblasts			
Listed are selected examples of dis- significant role in tissue injury. Som inflammation or a chronic illness w diseases and their pathogenesis are	ne, such as asthma, can present wi ith repeated bouts of acute exacer	th acute		

	Neutrophils	Macrophages
Origin	HSCs in bone marrow	HSCs in bone marrow (in inflammatory reactions) Many tissue-resident macrophages: stem cells in yolk sac or fetal liver (early in development)
Life span in tissues	1–2 days	Inflammatory macrophages: days or weeks Tissue-resident macrophages: years
Responses to activating stimuli	Rapid, short-lived, mostly degranulation and enzymatic activity	More prolonged, slower, often dependent on new gene transcription
 Reactive oxygen species 	Rapidly induced by assembly of phagocyte oxidase (respiratory burst)	Less prominent
Nitric oxide	Low levels or none	Induced following transcriptional activation of iNOS
Degranulation	Major response; induced by cytoskeletal rearrangement	Not prominent
- Cytokine production	Low levels or none	Major functional activity, requires transcriptional activation of cytokine genes
NET formation	Rapidly induced, by extrusion of nuclear contents	No
 Secretion of lysosomal enzymes 	Prominent	Less

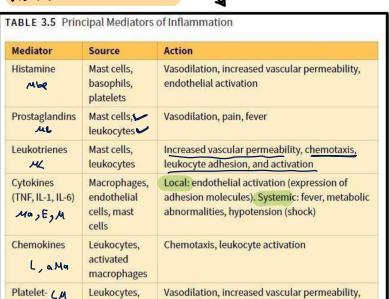
HSC, Hematopoietic stem cells; iNOS, inducible nitric oxide synthase; NET, neutrophil extracellular traps.

This table lists the major differences between neutrophils and macrophages. The reactions summarized above are described in the text. Note that the two cell types share many features, such as phagocy Ais, ability to migrate through blood vessels into tissues, and chemotoxis

Transudate	Leng importent Exudate
Low protein	High protein
Low cell content	Many cells & debris
Low specific gravity	Higher specific
	gravity
Caused by	Caused by increased
osmotic/hydrostatic	vascular permeability
pressure imbalance	and denotes
	inflammatory reaction

pathology Lee 4

activating


Complement

factor

Kinins

Most important tabels

Madiators of inflammation

oxidative burst

leukocyte adhesion, chemotaxis, degranulation,

Increased vascular permeability, smooth muscle

Leukocyte chemotaxis and activation, direct

target killing (membrane attack complex), vasodilation (mast cell stimulation)

contraction, vasodilation, pain

main (شرکنی)

I noteased . u escular
permen will to
Hi stamine
Leukotrienes
PAF
complement

Kenin

vasadilution
Histamine
Histamine
Histamine
Kenin

chemotaxis
Leukotrienes
PAF

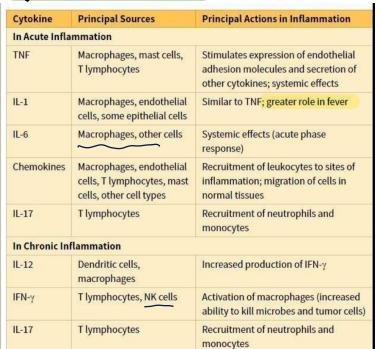
Arechadonic Acid Metabolites in Inflammation

TABLE 3.6 Principal Actions of Arachidonic Acid Metabolites in Inflammation

Action	Eicosanoid	
Vasodilation	Prostaglandins PGI ₂ (prostacyclin), PGE ₁ , PGE ₂ , PGD ₂	
Vasoconstriction	Thromboxane A ₂ , leukotrienes C ₄ , D ₄ , E ₄	
Increased vascular permeability	Leukotrienes C ₄ , D ₄ , E ₄	
Chemotaxis, leukocyte adhesion	Leukotriene B ₄	
Smooth muscle contraction	Prostaglandins PGC4, PGD4, PGE4	

Cytokines in inflammation

mast cells


(produced in

(produced in liver)

Plasma

liver)

Plasma

The most importal to the Reference of th

IFN-γ, Interferon-γ; IL-1, interleukin-1; NK, natural killer; TNF, tumor necrosis factor.

55<u>8</u>/

Fig. 3.10 Major roles of cytokines in acute inflammation. PDGF, Platelet-derived growth factor; PGE, prostaglandin E; PGI, prostaglandin I.

Vury important table which summerize mediators

TABLE 3.8 Role of Mediators in Different Reactions of Inflammation

Reaction of Inflammation	Principal Mediators
Vasodilation	Histamine
	Prostaglandins
Increased vascular permeability	Histamine
	C3a and C5a (by liberating vasoactive amines from mast cells, other cells)
	Leukotrienes C ₄ , D ₄ , E ₄
Chemotaxis, leukocyte recruitment and activation	TNF, IL-1
	Chemokines
	C3a, C5a
	Leukotriene B ₄
Fever	IL-1, TNF
	Prostaglandins
Pain	Prostaglandins
	Bradykinin
Tissue damage	Lysosomal enzymes of leukocytes
	Reactive oxygen species

this is a table about examles of Granulomatous inflammation

[specific chronic inflammation]

TABLE 3.9 Examples of Diseases With Granulomatous Inflammation

Disease	Cause	Tissue Reaction
Tuberculosis	Mycobacterium tuberculosis	Caseating granuloma (tubercle): focus of activated macrophages (epithelioid cells), rimmed by fibroblasts, lymphocytes, histiocytes, occasional Langhans giant cells; central necrosis with amorphous granular debris; acid-fast bacill
Leprosy	Mycobacterium (leprae)	Acid-fast bacilli in macrophages; noncaseating granulomas
Syphilis	<u>Treponema</u> pallidum	Gumma: microscopic to grossly visible lesion, enclosing wall of macrophages; plasma cell infiltrate; central cells are necrotic without loss of cellular outline; organisms difficult to identify in tissue
Cat-scratch disease	Gram-negative bacillus	Rounded or stellate granuloma containing central granular debris and recognizable neutrophils; giant cells uncommon
Sarcoidosis	Unknown etiology	Noncaseating granulomas with abundant activated macrophages
Crohn disease (inflammatory bowel disease)	Immune reaction against undefined gut microbes and, possibly, self antigens	Occasional noncaseating granulomas in the wall of the intestine, with dense chronic inflammatory infiltrate

classically 8 alternative pathway of Macrophages

ODY T cells: 2

	mentering
THI section in section	INF-A, activates Macs in classic pathway
Тн2	IL-4, IL-5 & IL-13; activates eosinophils and Macs alternative pathway
Тн17	IL-17, induce chemokines secretion and recruits PMNs

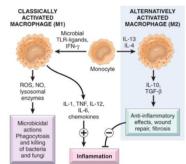


FIG. 3.19 🕑 Classical and alternative macrophage activation. Different stimuli activate m..

General Features and Causes of Inflammation

- Inflammation is a beneficial host response to foreign invaders and necrotic tissue, but also may cause tissue damage.
- The main components of inflammation are a vascular reaction and a cellular response; both are activated by mediators that are derived from plasma proteins and various cells.
- The steps of the inflammatory response can be remembered as the five Rs: (1) recognition of the injurious agent, (2) recruitment of leukocytes, (3) removal of the agent, (4) regulation (control) of the response, and (5) resolution (repair).
- · The causes of inflammation include infections, tissue necrosis, foreign bodies, trauma, and immune responses.
- Epithelial cells, tissue macrophages and dendritic cells, leukocytes, and other cell types express receptors that sense the presence of microbes and necrotic cells. Circulating proteins recognize microbes that have entered the blood.
- The outcome of acute inflammation is either elimination of the noxious stimulus followed by decline of the reaction and repair of the damaged tissue, or persistent injury resulting in chronic inflammation.

Lecture 2

Vascular Reactions in Acute Inflammation

- · Vasodilation is induced by inflammatory mediators such as histamine (described later), and is the cause of erythema and stasis of blood flow.
- Increased vascular permeability is induced by histamine, kinins, and other mediators that produce gaps between endothelial cells, by direct or leukocyteinduced endothelial injury, and by increased passage of fluids through the endothelium.
- · Increased vascular permeability allows plasma proteins and leukocytes, the mediators of host defense, to enter sites of infection or tissue damage. Fluid leak from blood vessels (exudation) results in edema.
- · Lymphatic vessels and lymph nodes also are involved in inflammation, and often show redness and swelling.

Lecture 2

Summary

Leukocyte Recruitment to Sites of Inflammation

- · Leukocytes are recruited from the blood into the extravascular tissue where infectious pathogens or damaged tissues may be located, migrate to the site of infection or tissue injury, and are activated to perform their functions.
- Leukocyte recruitment is a multistep process consisting of loose attachment to and rolling on endothelium (mediated by selectins); firm attachment to endothelium (mediated by integrins); and migration through interendothelial gaps.
- Various cytokines promote the expression of selectins and integrin ligands on endothelium (TNF, IL-1), increase the avidity of integrins for their ligands (chemokines), and promote directional migration of leukocytes (also chemokines). Tissue macrophages and other cells responding to the pathogens or damaged tissues produce many of these cytokines.
- · Neutrophils predominate in the early inflammatory infiltrate and are later replaced by monocytes and macrophages.

Lecture 4

Summary

Leukocyte Activation and Removal of Offending Agents

- · Leukocytes can eliminate microbes and dead cells by phagocytosis, followed by their destruction in phagolysosomes.
- Destruction is caused by free radicals (ROS, NO) generated in activated leukocytes and by granule enzymes.
- · Neutrophils can extrude their nuclear contents to form extracellular nets that trap and destroy microbes.
- · Granule enzymes may be released into the extracellular environment.
- · The mechanisms that function to eliminate microbes and dead cells (the physiologic role of inflammation) also are capable of damaging normal tissues (the pathologic consequences of inflammation).
- · Anti-inflammatory mediators terminate the acute inflammatory reaction when it is no longer needed.

Lecture 5

Summary

Actions of the Principal Mediators of Inflammation

- · Vasoactive amines, mainly histamine: vasodilation and increased vascular
- Arachidonic acid metabolites (prostaglandins and leukotrienes): several forms exist and are involved in vascular reactions, leukocyte chemotaxis, and other reactions of inflammation; antagonized by lipoxins
- · Cytokines: proteins produced by many cell types; usually act at short range; mediate multiple effects, mainly in leukocyte recruitment and migration; principal ones in acute inflammation are TNF, IL-1, and chemokines
- · Complement proteins: Activation of the complement system by microbes or antibodies leads to the generation of multiple breakdown products, which are responsible for leukocyte chemotaxis, opsonization and phagocytosis of microbes and other particles, and cell killing
- · Kinins: produced by proteolytic cleavage of precursors; mediate vascular reaction, pain

Lecture 6

Summary

Chronic Inflammation

- Chronic inflammation is a prolonged host response to persistent stimuli that may follow unresolved acute inflammation or be chronic from the outset.
- · It is caused by microbes that resist elimination, immune responses against self and environmental antigens, and some toxic substances (e.g., silica); underlies many
- · It is characterized by coexisting inflammation, tissue injury, attempted repair by
- The cellular infiltrate consists of macrophages, lymphocytes, plasma cells, and
- other leukocytes.

 It is mediated by cytokines produced by macrophages and lymphocytes (notably T lymphocytes): bidirectional interactions between these cells tend to amplify and ong the inflammatory reaction.
- Granulomatous inflammation is a morphologically specific pattern of chronic inflammation induced by T cell and macrophage activation in res that is resistant to eradic

Summary

Systemic Effects of Inflammation

- Fever: Cytokines (TNF, IL-1) stimulate production of PGs in hypothalamus
- Production of acute-phase proteins: C-reactive protein, other stimulated by cytokines (IL-6, others) acting on liver cells
- Leukocytosis: Cytokines (CSFs) stimulate production of leukocytes from precursors
- In some severe infections, septic shock: Fall in blood pressure, disseminated intravascular coagulation, metabolic abnormalities; induced by high levels of TNF

Summary

Repair by Regeneration

- Different tissues consist of continuously dividing cells (epithelia, hematopoietic tissues), normally quiescent cells that are capable of proliferation (most parenchymal organs), and nondividing cells (neurons, skeletal and cardiac muscle).
 The regenerative capacity of a tissue depends on the proliferative potential of its constituent cells.
- Cell proliferation is controlled by the cell cycle, and is stimulated by growth factors and interactions of cells with the extracellular matrix.
- Regeneration of the liver is a classic example of repair by regeneration. It is triggered by cytokines and growth factors produced in response to loss of liver mass and inflammation. In different situations, regeneration may occur by proliferation of surviving hepatocytes or repopulation from progenitor cells.

Lacture 8

Summary

Repair by Scar Formation

- Repair occurs by deposition of connective tissue and scar formation if the injured tissue is not capable of regeneration or if the structural framework is damaged and cannot support regeneration.
- The main steps in repair by scarring are clot formation, inflammation, angiogenesis and formation of granulation tissue, migration and proliferation of fibroblasts, collagen synthesis, and connective tissue remodeling.
- Macrophages are critical for orchestrating the repair process, by eliminating
 offending agents and producing cytokines and growth factors that stimulate the
 proliferation of the cell types involved in repair.
- TGF- β is a potent fibrogenic agent; ECM deposition depends on the balance among fibrogenic agents, matrix metalloproteinases (MMPs) that digest ECM, and the tissue inhibitors of MMPs (TIMPs).

Lecture

Summary

Cutaneous Wound Healing and Pathologic Aspects of Repair

- The main phases of cutaneous wound healing are inflammation, formation of granulation tissue, and ECM remodeling.
- Cutaneous wounds can heal by primary union (first intention) or secondary union (secondary intention); secondary healing involves more extensive scarring and wound contraction.
- Wound healing can be altered by many conditions, particularly infection and diabetes; the type, volume, and location of the injury are important factors that influence the healing process.
- $\, \bullet \,$ Excessive production of ECM can cause keloids in the skin.
- Persistent stimulation of collagen synthesis in chronic inflammatory diseases leads to tissue fibrosis, often with extensive loss of the tissue and functional impairment.

questions from elearning becture

Lecture 1

Which of the following statements best describes the inflammatory process?

A)It is a damaging process in more than 65% of the cases

B)It is almost always beneficial and harmless

C)It is a response of vascularized tissue to injurious agents

D)It requires innate immunity to be protective

E)Viruses are the causative agents in 75% of the cases

lecture 2

In contrast to transudate; exudate is characterized by:

A)Low protein content

B)High cellularity

C)Rare red blood cells

D)More lymphocytes than neutrophils

E)Lower specific gravity

Lacture 3

Which one of the following nuclear products acts as viscous meshwork after neutrophil death?

A)Neutrophil myeloperoxidases

B)Nitric oxide halide

C)Neutrophil extracellular traps

D)Super oxide radicals

E)Neutrophilic metalloproteinases

Lecture 4

Steroids are potent anti-inflammatory agents because they inhibit the cyclo-oxygenase pathway?

True

False

Lecture S

Patients feel pain at the site of inflammation; which one of the following mediator of inflammation is the major player in pain sensation?

A)Tumor necrosis factor (TNF)

B)Interleukins

C)Kinin/bradykinin system

D) Chemokines

E)Complement C5a