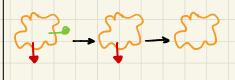
Different parts of the immune system:

Innate vs. Adaptive immunity


	Innate immunity	Adaptive immunity	
Encoding of receptors	Germline	somatic	
Distribution of receptors	Non Clonal (not specific)	Clonal (very specific)	
Repertoire of receptors	Limited	Very large	
Speed	Fast	Slow	
Long-lasting memory	No	Yes	

THE STORES genetic & environmental melanocyte eg:

UV light
melanocyte - melanoma stress factor factors can cause trumos 🔻 tumor associated Ag (NK) Both release perforin - Chemotherapy: Drugs
to create poves & granzymas cancer cells to die

-TH help DC activate CTL & produce IFMY to activate NK cells

to induce apoptosis

- Tumors are often heterogenous: Genetic changes occur to give tumor cells survival advantage, which mean they will stop expressing Ags that activate Nk & CTL by immuno - editing.

-They also attract immune cells that

suppress the activity of other immune cells and express inhibitory molecule PDL1 that binds to PD1 receptor on T cells to suppress them

-Chemotherapy: Drugs that induce

-Immunotherapy: Using the body's own immune system to kill concer Cachinating immune cells to recognize concer as a foreign tissue)

- First used by William Coley - Coley toxin: heat mactivated bacterior to induce inflammation

- Colen injected in	activated bacters		
- Coley injected indicated there	e an immune respo	1152	
For	ur general strates	jies of immunothers	ભ
J	Removing	1	1
Non speafic	immune - check point	Adaptive 'mmune	Vaccination
immune stimulation:		transfer:	
			# Viruses:-
* Injecting molecules:	(Blockades	* Tumor :-	-direct immune cells
- to give immune system	inhibit T cell	-it's difficult to	specifically to concertisme
general boosts in vivo	activity to prevent	extract immune cells	- weakened HSV modified
- activates APCs by	collateral damage,	from tumor but the	to produce an immune
binding to receptors that	to fight cancer	advantage is that the	stimulating factor is being
activate them to activate	they need to be	cells have already	developed against melanoma
Tcells	removed)		thead and neck concer
*11-2 \$ 1FN x:	+ CTLA-4:	* Blood:-	*APC vaccination:
- Cylotines are needed	-blocking them	-Taking cells is	-using persons immune cells
for full activation	helps DC drive	casier	- APCs taken from patient
- treat some forms of	anti-tumor Tcell		mature outside the body
concer like melanoma	response		\$ loaded with tumor Ag
-boost the activity of	- The Ab		reintroduced to patient
anti-tumor immune cells			to stimulate immune cells
			-(Provenge/Sipuleuccl-T)
* BCG vaccine:	* PD1:	multiplied in petri	first APC vaccination
-live attenuated	- use Ab that	dishes before	
MB bovis	block it to switch		# Tumor cell:-
- Cthis one is similar	off CTLs.	to the patient	- extracted _ irradiated
to Coley toxin)		•	to prevent spreading -
- cause inflammation			engineered to secrete activating
1 # of immune cells			growth factorsinjectalto pation
around the tumor			-> growth factors abort immune

* Immunotherapy:

- Not all patients will respond to these immunotherapies and some responses will be delayed.
- Combining immunotherapy with chemotherapy or radiotherapy can lead to a better responses in some patients.
- Immunotherapies can themselves be combined.
- For example PD1 and CTLA-4 blockade can improve response when administered in combination.
- Since the introduction of ipilimumab (anti-CTLA-4) in 2011, the number of drugs approved for treatment of metastatic melanoma has expanded dramatically.
- Several drugs originally approved as monotherapies are now available as combinations which elicit greater clinical benefits.

* Risks:

Activating the immune system has risks, some patients develop harmful side effects when their immune system attacks healthy cells.

Nevertheless there have been encouraging results from clinical trials.

Immunotherapies can be used to treat many different types of cancer

Types of immunotherapy

- · Passive immunotherapy:
- Adminstration of monoclonal antibodies which target either tumour-specific or over-expressed antigens.
- Active immunotherapies:
- Cytokines- IL-2 / IFNs / TNFα
- Cancer vaccines
- Cell-based therapies
- tumour-specific CTL
- tumour-derived APC
- DC priming