# Measures of Association in Epidemiology 

Dr. Sireen Alkhaldi
Community Medicine 2023/ 2024
Faculty of Medicine, The University of Jordan


## Measures of Association in Epidemiology

-Chi square
-Odds Ratio (OR)
-Relative Risk or Risk Ratio (RR)
-Attributable Risk (AR)

## 2X2 Table (contingency table)

|  |  | Disease |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Yes (+) | No (-) | Total |
| Exposure | Yes (+) | $\mathbf{a}$ | b | a+ b |
|  | No (-) | c | d | c+d |
|  | Total | a+c | b+d | a+b+c+d |

## Cells

| Event <br> forecast | Event observed |  |  |
| :---: | :---: | :---: | :---: |
|  | Yes | No | Marginal total |
| Yes | $a$ | $b$ | $a+b$ |
| No | $c$ | $d$ | $c+d$ |
| Marginal total | $a+c$ | $b+d$ | $a+b+c+d=n$ |

# A= Exposed, and diseased B= Exposed, Not diseased C= Not exposed, diseased D= Not exposed, Not diseased A $+\mathrm{B}+\mathrm{C}+\mathrm{D}=$ Total 

## Totals

## Marginal totals

| Event <br> forecast | Event observed |  |  |
| :---: | :---: | :---: | :---: |
|  | Yes | No | Marginal total |
| Yes | $a$ | $b$ | $a+b$ |
| No | $c$ | $d$ | $c+d$ |
| Marginal total | $a+c$ | $b+d$ | $a+b+c+d=n$ |

## $a+b=$ Exposed <br> c+d= Non-exposed <br> a+c= Diseased <br> b+d= Non-diseased

## Grand total

$$
n=a+b+c+d
$$

## 1. Chi-square in Cross-sectional studies

Chi-square tests whether there is an association between two categorical variables.

For a 2X2, table: $\quad \mathrm{X}^{2}=\underline{\mathrm{n}(\mathrm{ad}-\mathrm{bc})-\mathrm{n} / 2)^{2}}$

$$
(a+b)(a+c)(c+d)(b+d)
$$

If the calculated chi-square value is greater than the critical value or $\mathrm{P}<0.05$, we say that there is a significant association between the risk factor and the disease (usually calculated using software like SPSS or excel).

Chi-square statistic tells only whether there is association. It doesn't tell us how strong an association is.

## 2. Relative risk (RR) or Risk Ratio (RR) In a cohort study

RR: The estimation of disease risk associated with exposure (strength of association)

RR Expresses risk of developing a disease in exposed group ( $\mathrm{a}+\mathrm{b}$ ) as compared to non-exposed group ( $\mathrm{c}+\mathrm{d}$ )

$$
R R=\frac{\text { Incidence (risk) among exposed }}{\text { Incidence (risk) among non-exposed }}
$$

$$
R R=\frac{a /(a+b)}{c /(c+d)}
$$

| Event <br> forecast | Event observed |  |  |
| :---: | :---: | :---: | :---: |
|  | Yes | No | Marginal total |
| Yes | $a$ | $b$ | $a+b$ |
| No | $c$ | $d$ | $c+d$ |
| Marginal total | $a+c$ | $b+d$ | $a+b+c+d=n$ |

## Analysis in Cohort studies

## In a Cohort Study, we can calculate Incidence. So, Relative Risk can be obtained from a cohort study.

| Cigarette smoking <br> (Exposure) | Disease <br> (with Ca lung ) | No Disease <br> (without Ca lung) | Total |
| :---: | :---: | :---: | :---: |
| Yes | 70 (a) | 6930 (b) | 7000 <br> $(a+b)$ |
| No | $3(c)$ | $2997(d)$ | 3000 <br> $(c+d)$ |

## RR in a Cohort Study

## Incidence rates :

Risk among exposed (smokers) $=70 / 7000=10 / 1000$.
Risk among non-exposed(non smokers) $=3 / 3000=1 / 1000$.
RR = Risk (Incidence) among exposed Risk (Incidence) among non exposed.
$R R=10 / 1=10$
The exposed have 10 times the risk of developing the disease when compared to non-exposed

## Interpretation of relative risk

What does a RR of 2 mean?
Risk in exposed=2X Risk in non-exposed

Thus a relative risk of 2 means the exposed group is two times at a higher risk of developing the disease when compared to non-exposed

## Strength of association

In general strength of association can be considered as:
High association if $R R \geq 3$
Moderate if RR is between 1.5 \& 2.9
Weak association if RR is between 1.2 \& 1.4
No association exists if $R R$ is 1
Negative association (protective effect) if RR<1

## 3. ODDS RATIO (OR)

Odds Ratio (OR) is a measure of the strength of the association between risk factor \& outcome.
$\checkmark$ The odds ratio is the cross product of the entries in table.
$\checkmark$ OR can be calculated in case-control studies instead of RR

## Odds ratio (OR)

Odds Ratio can be a good estimate of RR.
Odds ratio is the ratio of odds of exposure among diseased to odds of exposure among non-diseased

OR = Odds of exposure among diseased
Odds of exposure among non-diseased
$=(a / c) /(b / d)=a d / b c$
Interpretation of $O R$ is the same as that of $R R$

## Odds ratio...

RR can be best estimated by OR if the following conditions are fulfilled:

1. Controls are representative of general population
2. Selected cases are representative of all cases
3. The disease is rare

## ANALYSIS in case-control studies

Estimation of the odds of exposure among the exposed ( odds ratio )

## OR in a case-control study



## OR in Case-control studies

Odds ratio is a key parameter in the analysis of Case-control studies

Disease

|  | Cases (Lung <br> Ca) |  |
| :--- | :---: | :---: |
| Smokers | $a(33)$ | Controls <br> (No Lung Ca) |
| Not smokers | $c(2)$ | $b$ (55) |

$$
\text { Odds Ratio }=a d / b c=\frac{33 \times 27}{55 \times 2}=8.1
$$

## Attributable Risk (AR)

AR indicates how much of the risk is due to (attributable to) the exposure.

Quantifies the excess risk in the exposed that can be attributable to the exposure, by removing the risk of the disease that occurred due to other causes.

AR= Risk (incidence) in exposed- Risk (incidence) in non-exposed

$$
A R=[a /(a+b)]-[c /(c+d)]
$$

Attributable risk is also called risk difference.

## Attributable risk percent (AR\%)

Estimates the proportion of disease among the exposed that is attributable to the exposure (example of smoking and lung C ).
$A R \%=($ Risk in exposed - Risk in non-exposed $) \times 100 \%$ Risk in exposed
$A R \%=\underline{10-1} \times 100 \%=90 \%$ (as in the previous Cohort study example) 10
$\square 90 \%$ of the lung cancer among smokers was due to their smoking.
$\square$ This suggests the amount of disease that might be eliminated if smoking could be controlled or eliminated.

## Possible outcomes in studying the relationship between exposure \& disease

1. No association

RR=1
AR=0
2. Positive association
$R \mathrm{R}>1$
$A R>0$
3. Negative association
$R R<1$ (fraction)
AR<0 (Negative)

## Risk Vs Preventive factors

A risk factor is any factor positively associated with a disease ( $R R>1$ ). It is associated with an increased occurrence of a disease
A preventive factor is any factor negatively associated with a disease $(R R<1)$. It is associated with a decreased occurrence of a disease.
Risk and preventive factors may (not) be amenable to change (e.g. Smoking, age)

