A researcher wants to compare the mean age of 3 groups of new employees recruited for a new hospital: dentists, physicians, and nurse practitioners. The appropriate statistical test to use is:

- a. Non-parametric; Kruskal Wallis H.
- b. Non-parametric; Pearson's Chi-square.
- c. Parametric; paired sample t test.
- d. Parametric; analysis of variance (ANOVA).

Summary Table of Statistical Tests

Level of Measurement	Sample Characteristics					
	1 Sample	2 Sample		K Sample		
		Independent	Dependent	Independent	Dependent	
Categorical or Nominal	X2	X2	Macnarmar's X2	X2	Cochran's Q	
Rank or Ordinal		Mann Whitney U	Wilcoxin Matched Pairs Signed Ranks	Kruskal Wallis H	Friendman's ANOVA	Spearman's rho
Parametric (Interval & Ratio)	z test or t test	t test between groups	t test within groups	1 way ANOVA between groups	l way ANOVA (within or repeated measure)	Pearson's r

2 Rows

- 2. A researcher studied the association between quality of certain products (high quality, poor quality) and its' brand name (H&M, Zara, M&S, Atalla) using Chi-square. The degrees of freedom in this test equal: ¹ 4 Columns
 - a. 3
 - b. 2
 - c. 4
 - d. 5

df = (R - I)(C - I)= (2 - I)(4 - I) = 3 3. The best decision given the following SPSS chi-square output of the relationship between age group (toddler, school-age, adolescents) and imagination (high, low) is to:

Chi-Square Tests							
	Value	df	Asymp. Sig. (2-sided)				
Pearson Chi-Square	2.821ª	2	.244				
Likelihood Ratio	2.815	2	.245				
Linear-by-Linear Association	.832	1	.362				
N of Valid Cases	606						

a. Reject null hypothesis.

- (b.) Keep null hypothesis.
- c. Accept alternative hypothesis.
- d. There is a statistically significant association between age group and depression.

The probability of the chi-square test statistic (chi-square=2.821) was p=0.244, greater than the alpha level of significance of 0.05. The null hypothesis that differences in "age group" are independent of differences in "imagination" is not rejected.

- 4. If sample A has 8 patients, and sample B has 11 patients, then degrees of freedom of this *t*-independent test equal:
 - a. 19 b. 17 c. 2 d. 18

d f = NI + N2 - 2 = 8 + II - 2 = 17

		$P(X \le x)$ along							
		0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990
	r	$\chi^2_{0.99}(r)$	$\chi^2_{0.975}(r)$	$\chi^2_{0.95}(r)$	$\chi^2_{0.90}(r)$	$\chi^2_{0.10}(r)$	$\chi^2_{0.05}(r)$	$\chi^2_{0.025}(r)$	$\chi^2_{0.01}(r)$
6	1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635
F +	2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
	3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34
	4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28
	5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09
	6	0.872	1.237	1.635	2.204	10.64	12.59	14.45	16.81
	7	1.239	1.690	2.167	2.833	12.02	14.07	16.01	18.48
	8	1.646	2.180	2.733	3.490	13.36	15.51	17.54	20.09
	9	2.088	2.700	3.325	4.168	14.68	16.92	19.02	21.67
	10	2.558	3.247	3.940	4.865	15.99	18.31	20.48	23.21

5. Use this this chi-square critical value table to answer the following question:

```
A researche<u>r calculated the value of chi-square to be = 5.991</u>. If df = 2, and <u>alpha = 0.05</u>.
Pick the correct statement of the followings:
```

- a. The critical value of chi-square is greater than calculated value of chi-square. Thus, reject H_0 .
- b. Critical value of chi-square is smaller than calculated value of chi-square. Thus, keep H₀.

c.) Critical value of chi-square is equal to the calculated value of chi-square. Thus, we don't have enough data to reject the H₀.

d. Critical value of chi-square is smaller than calculated value of chi-square. Thus, reject H_0 .