Incidence and prevalance

* Incidence is a disease risk

Incidence $=$ number of new cases of a disease (during a specific time)
number of people at risk for the disease (during that specific time)

* the number we get from the equation can be multiplied by ($\times 1000$) to get the new cases per 1000 population, or ($x 100$) to get number of cases per 100 population.
* example: if we have lo women free from disease, 4 of them developed uterine Cancer during a year \longrightarrow incidence $=\frac{4}{10} \times 1000=400$ cases per 1000 population
- every person in the denominator must have the potential to become one of the people in the nomenator
* example: if we have lo women, two of them had their uterus removed, and y of these lo women developed uterine cancer \rightarrow incidence $=\frac{4}{7} \times 1000=570$ per 1000
these two women who had their uterus removed are not at risk of developing the disease.
* Prevalence is a disease burden

$$
\text { Prevelance }=\frac{\text { Affected People }}{\text { People in the Population }}
$$

* What is the difference between incidence and prevalence?

If we have 5 people who developed a disease, over a period of six months one developed the disease in January, two in february, one in April and one in May. If we ignore the denominator, the incidence rate for february will be 2 2 is also the nominator.

- Prevalence take in count the duration of the disease.
depending on the example before, if we have the same cases, but the one that was diagnosed in January is cured in may, case 2 is cured in April, case 3 is cured in march, etc.
Now, we have different numbers of cases in each month so that some cases were cured.

* So we can say that prevelence is determined by how many cases join and leave the prevalence pool by death or cure.
- if death $\dagger \rightarrow$ more people will leave the pool (duration \downarrow)
death \rightarrow less people will leave the pool (duration \uparrow)
cure \rightarrow more people will leave the pool
(use $\downarrow \rightarrow$ less people will leave the pool (duration \uparrow)
- death rate and cure rate determine the duration
* Prevalence \Rightarrow good for planning health services
* prevalence $=$ incidence(cases) \times Duration
- with longer duration prevalence will be higher, but in short duration prevalence will be less
* example: If I tell you that the CHD Prevalence rate in Hollywood is 50 per 1000 , and the prevalence rate of CHD in Bronx is 10 per 1000 , but in both locations incidence rate is δ perlovo, and the duration of the disease is lo years in Hollywood due to better care, while it is 2 years in Bronx. At the end, the high prevalence rate in Hollywood was just because of better care.

| CHD Prevalence |
| :---: | :---: | :---: | :---: |
| per 1000 |\quad| Incidence per |
| :--- |
| 1000 per year |\quad| duration |
| :---: |
| of disease |

activity 1 / weak 2 / Epidemiology by: Nasam Masadeh

