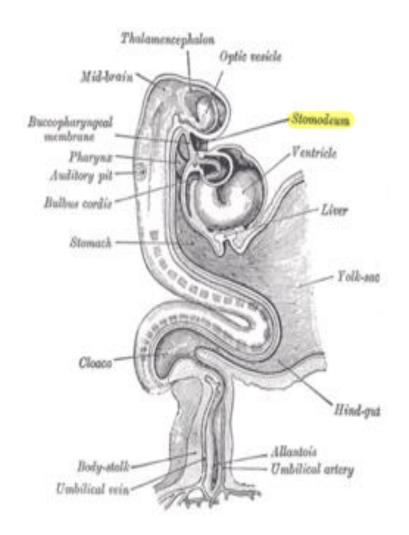

Gi tract embryology 1

Development of the oral cavity

The mouth has 2 sources of development:

• 1. depression in the stomodeum (lined with ectoderm)


Behind the _____ the origin.

Stomolium with endoderm)

• These two points are separated by the buccopharyngeal membrane

Chodermal > Pharynx -> en bolermal

 During the 3rd week of development the membrane disappears

- important land mank

If the membrane persists (we create an imaginary line), it will extend to:

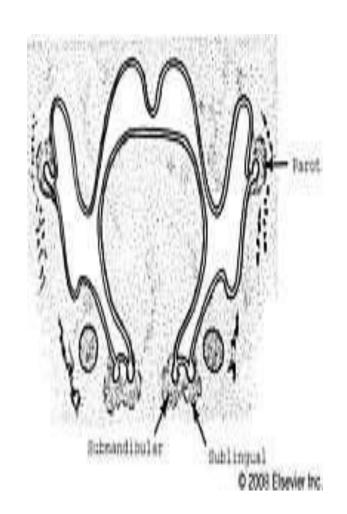
Body of sphenoid of by Mark 130 y of sphenoids

Inner surface of the mandible, inferior to the incisor teeth

- Structures that are anterior to this plane are ectodermic in origin (epithelium) like:
- Hard palate
- Sides of the mouth
- Lips
- Enamel of the teeth

Membranous capsule over cerebral hemisphere Fronto-nasal process Lateral nasal process EyeGlobular process Maxillary process Stomodeum Mandibular arch $Hyomandibular\ cleft$

 Structures situated posterior to this plane are derived from endoderm:


- Tongue
- Soft palate
- Palatoglossus and palatopharyngeal folds
- Floor of the mouth

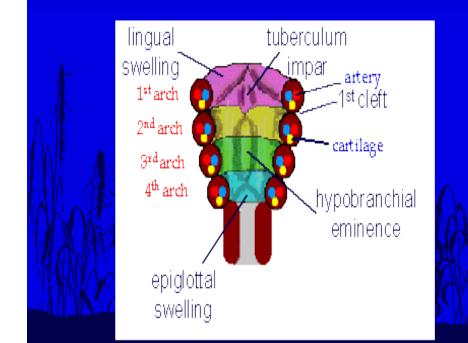
* Lix Deci ung In Zer 3 whore original original

Convecile HISUR layer he some bis surface & pahelium 11 = inthe = 24 - Lani & Proliferation of colls his mes surface & SM Fight Eighal (En 1970) CT = s Hubbule = is epithehial 11 _ me : CT = s invagination * I'm exoching (1 = gloud is) - ilm exoching (1 = gloud is) - ilm (= Emsil Come Duch The duct
Connective HISSUP
The end, which become doing endochin = la = 2 (Z = plant incl pauls Duct bull of in secretions I gate as thyroid Pollick to a daini _m/3 Will work out the workshop of a fix I how to some supply to out the out of the sound of the soun

Development of the salivary glands

- During the 7th week it arises as a solid outgrowth of cells from the walls of the developing mouth
- These cells will grow into the underlying mesenchyme
- The epithelial buds will go through repeated branching to form solid ducts
- The ends of these ducts will form the secretory acini, and they will both go through canalization

- The surrounding mesenchyme will condense to form:
- The capsule of the gland
- Septa that divide the gland into different lobes and lobules


 Switch or inter Calabel
- The ducts and acini of the parotid gland are both derived from the ectoderm (where to the plane)
- Submandibular and sublingual glands are derived from the endoderm (position to the plane)

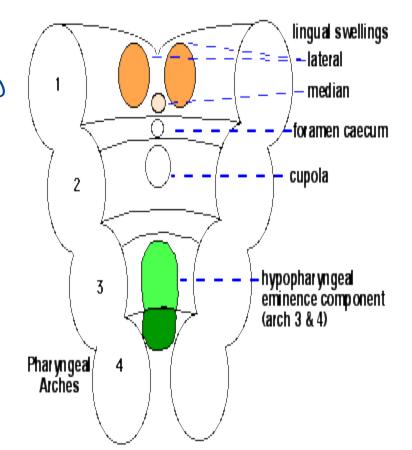
Tongue

- The tongue appears in embryos of approximately 4 weeks in the form of two lateral lingual swellings and one medial swelling, the tuberculum impar
- These three swellings originate from the first pharyngeal arch.
- A second median swelling, the copula, or hypobranchial eminence, is formed by mesoderm of the second, third, and part of the fourth arch.
- Finally, a third median swelling, formed by the posterior part of the fourth arch, marks development of the epiglottis.

Development of the Tongue

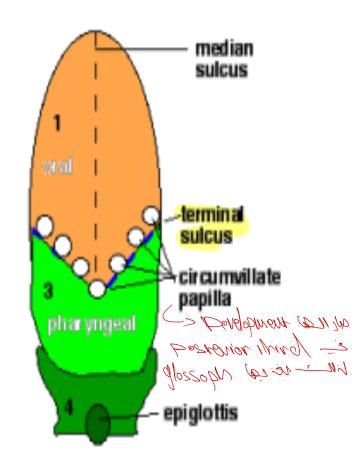
Tongue develops where the stomodeum and pharynx meet.

 Immediately behind this swelling is the laryngeal orifice, which is flanked by the arytenoids swellings


salvante the epiglothis

 As the lateral lingual swellings increase in size, they overgrow the tuberculum impar and merge, forming the anterior twothirds, or body, of the tongue

- inversary por pushal nouns (2012011)


- Since the mucosa covering the body of the tongue originates from the first pharyngeal arch, sensory innervation to this area is by the mandibular branch of the trigeminal nerve.
- The body of the tongue is separated from the posterior third by a V-shaped groove, the terminal sulcus

Development of the Tongue (part 1)

- The posterior part, or root, of the tongue originates from the second, third, and part of the fourth pharyngeal arch.
- The fact that sensory innervation to this part of the tongue is supplied by the glossopharyngeal nerve indicates that tissue of the third arch overgrows that of the second.
- The epiglottis and the extreme posterior part of the tongue are innervated by the superior laryngeal nerve, reflecting their development from the fourth arch.

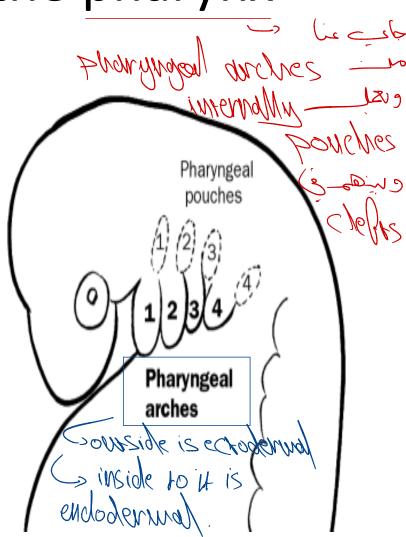
Development of the Tongue (part 3)

 Some of the tongue muscles probably differentiate in situ, but most are derived from myoblasts originating in <u>occipital somites.</u>

-> mours hypoglossal n.

Thus, tongue musculature is innervated by the

* Except platoglossal which innervation (taste) to the anterior two

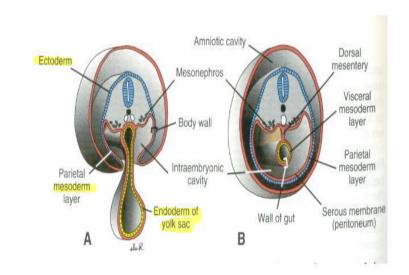

- thirds of the tongue is provided by the chorda tympani
- branch of the facial nerve, while the posterior third is supplied by the glossopharyngeal nerve.

-> Posterior Sensolm

* las assign su enpount les monnegolors de l'égre Anterior two thirds and posterior one third Development __inter Circumvallable __ilg dukerion de roissant chosophounnoped -isis

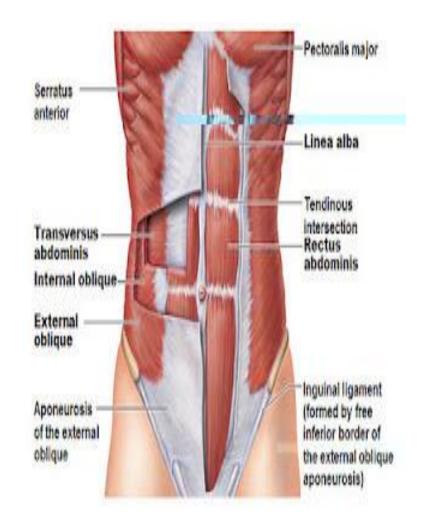
Development of the pharynx

- The pharynx develops in the neck from the endoderm of the foregut
- The endoderm is separate from the surface ectoderm by mesenchyme
- The mesenchyme in each side splits up to 5-6 arches
- Each arch forms a swelling on the surface of the walls of the foregut
- As a result of these swellings a series of clefts are seen between the arches....pharyngeal clefts
- Similar grooves are found on the lateral walls of the foregut....pharyngeal pouches
- The foregut on this level is known as the pharynx


Development of the anterior abdominal wall

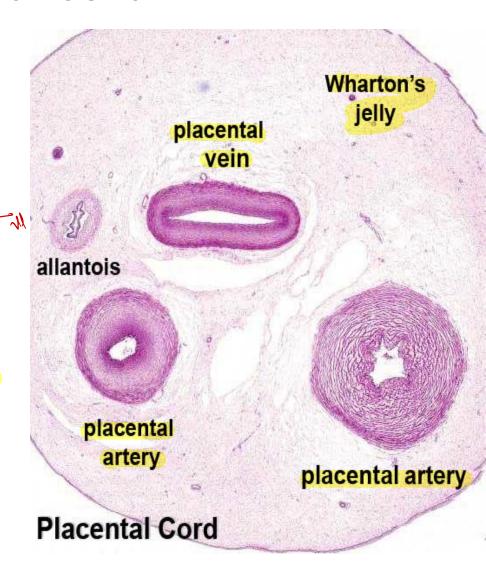
- Following the segmentation of the mesoderm, the lateral mesoderm divides into:
- Somatic layer (outer)
- Splanchic layer (inner)
- Both lined by endo and ectoderm
- The ant. Abdominal wall is derived from the somatoplueric mesoderm and they retain their innervation from the ventral rami of the spinal nerves
- The somatoplueric mesoderm then tangentially divides into three layers:
- Ext. oblique
- Int. oblique
- Trans. abdominus

Lateral Plate Mesoderm Further Divides into Somatopleuric mesoderm and Splanchnopleuric mesoderm.


Somatopleuric mesoderm becomes parietal mesoderm which form serous membranes that line the peritoneal, pleural, and pericardial cavities.

Splanchnopleuric mesoderm becomes visceral mesoderm which form serous membranes that line each organ.

The rectus abdominus muscle


- The rectus abdominus muscle retains the indications of the segmental origin (the presence of tendinous intersections)
- Finally the abd. Wall right and left sides of mesenchyme fuses together at 3 months into the midline to form the linea alpa. (W WW MON)
- On either side of the lina alpa the rectus muscles lies within their rectus sheaths

Development of the umblicus and the umblical cord

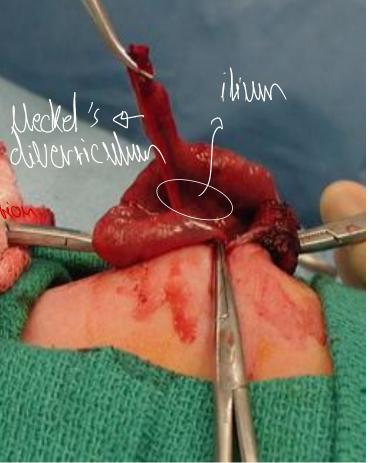
- The amnion and the chorion fuse together
- The amnion encloses the body stalk and the yolk sac with their blood vessels to form the tubular umbilical cord
- The mesenchyme core of the cord (whartons jelly) form a loose connective tissue which embed the following:
- Remains of yolk sac
- Vittelline duct
- Remains of allantois
- Umbilical blood vessels
- We have 2 arteries that carries deoxygenated blood from the fetus to the chorion (placenta)
- 2 veins carry oxygenated blood from the placenta
 placenta
 placenta
- , but the right vein will soon disappear

yidgmin know 7 - 120 c-

Vitelline Duct Abnormalities

• In 2 to 4% of people, a small portion of the vitelline duct

In 2 to 4% of people, a small portion of the vitelline duct persists, forming an outpocketing of the ileum, Meckel's diverticulum or ileal diverticulum


عوالي ٥٠٥ من الما ٢٠ نغل

• In the adult, this diverticulum, who are approximately 40 to 60 cm from the ileocecal valve on the antimesenteric border of the ileum, does not usually cause any symptoms.

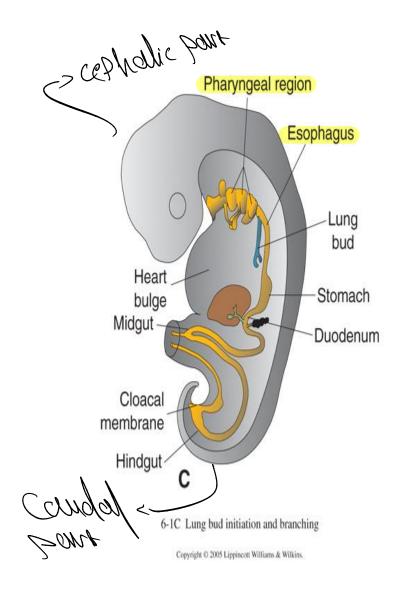
وبعل هاد الجزء

However, when it contains by Marriculum I have heterotopic pancreatic tissue or gastric mucosa, it may cause ulceration, bleeding, or even perforation due gastric or pancreatic peritoritis

Apindisinis 32 L Symphons med

 Sometimes both ends of the vitelline duct transform into fibrous cords, and the middle portion forms a large cyst, an enterocystoma, or vitelline cyst

Derivatives of Midgut:


- Distal half of the Duodenum
- Entire Small Intestine
- Jejunum,
- Ileum
- Z/3rd of Large Intestine
- Cecum,
- Appendix,
- Ascending Colon,
- Transverse Colon
(proximal 2/3rd)

Example + esophogus + upper half of doublerrum = foregue and the blood suppling

Formation of the Lung Buds

and esophologus

- When the embryo is approximately 4 weeks old, the respiratory diverticulum (lung bud) appears as an outgrowth from the ventral wall of the foregut
- The location of the bud along the gut tube is determined by signals from the surrounding mesenchyme, including fibroblast growth factors (FGFs) that "instruct" the endoderm.
- Hence epithelium of the internal lining of the larynx, trachea, and bronchi, as well as that of the lungs, is entirely of endodermal origin.
- The cartilaginous, muscular, and connective tissue components of the trachea and lungs are derived from splanchnic mesoderm surrounding the foregut

esophagus in la Connection in the bud I visited shint is *
slimb sephathour asin us supple CII and 185 It set allo, Hackers epiglouss - isis Initially the lung bud is in open communication with the foregut

When the diverticulum expands caudally, however, two longitudinal ridges, the tracheoesophageal ridges, separate it WET Chisa SODYMUT - Print & from the foregut

Subsequently, when these ridges fuse to form the tracheoesophageal septum, the foregut is divided into a dorsal () Stemos) portion, the esophagus, and a ventral (when it portion, the trachea and lung buds

The respiratory primordium maintains its communication with the pharynx through the laryngeal orifice

* Ceneral Rule &

* Ridge -> Septum -> Sepromion between 2 Il low up bim

Esophagotracheal Foregut , repullange anyma and phomatic

Lujonin Mhundol,