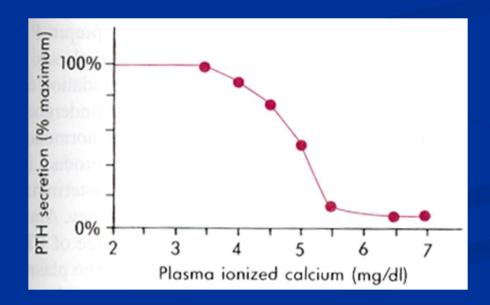
Parathyroid Gland & Calcium Metabolism

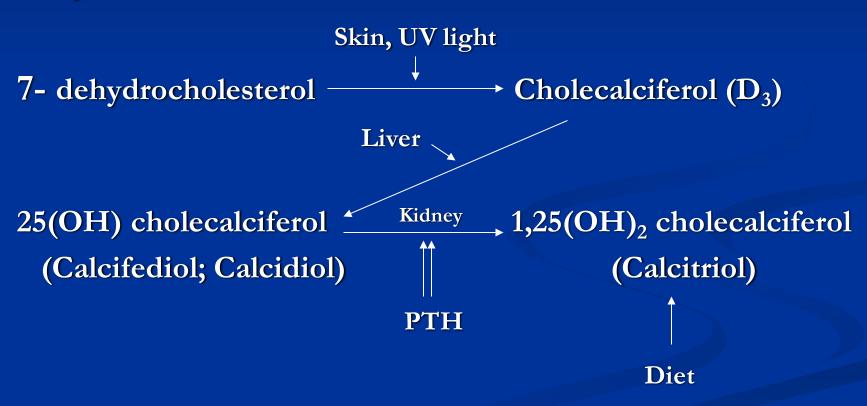
- 3 factors PTH, Vitamin D, Calcitonin
- 3 tissues Bone, Intestine, Kidneys

Parathyroid Hormone (PTH)


84 a.a peptide translated as a pre-prohormone

Regulation of synthesis & release:

$$\downarrow$$
 [Ca⁺⁺] \rightarrow \uparrow PTH; \uparrow [Ca⁺⁺] \rightarrow \downarrow PTH


Little if any regulation by PO₄ -

- Maximum secretion of PTH occurs at plasma Ca⁺⁺ below 3.5 mg/dl
- At Ca⁺⁺ above 5.5 mg/dl, PTH secretion is maximally inhibited

- On bone (1° target tissue):
 PTH ↑ resorption of Ca⁺⁺& PO₄⁻⁻
 (cAMP) mediated effect
- On intestine:
- ↑ absorption of Ca⁺⁺& PO₄⁻⁻
- An indirect effect through \(\gamma \) vitamin D synthesis
- On kidneys:
- \uparrow reabsorption of Ca⁺⁺, $\uparrow\uparrow\uparrow$ excretion of PO₄⁻⁻ (cAMP mediated effect)

Synthesis of vitamin D

Vitamin D (Normal daily requirement 400 IU/day)

- On intestine (1° target tissue):
- ↑ absorption of Ca⁺⁺& PO₄⁻⁻
- On bone:
- ↑ bone resorption
- On kidney:
- ↑ reabsorption of Ca⁺⁺& PO₄⁻⁻

Calcitonin (32 a.a peptide)

Synthesized and released from parafollicular cells of the thyroid

- Regulation of synthesis & release:
- \uparrow [Ca⁺⁺] \rightarrow \uparrow calcitonin; \downarrow [Ca⁺⁺] \rightarrow \downarrow calcitonin
- Effects:
- On bone: \downarrow bone resorption (\downarrow Ca⁺⁺&PO₄-movement)
- On kidneys: ↑ Ca⁺⁺& PO₄⁻⁻ excretion
- ? On intestine: \downarrow Ca⁺⁺& PO₄⁻ absorption

- May be more important in regulating bone remodeling than in Ca⁺⁺ homeostasis:
- Evidence: Chronic excess of calcitonin does not produce hypocalcemia and removal of parafollicular cells does not cause hypercalcemia
- PTH and Vitamin D₃ regulation dominate

$\begin{array}{c|cccc} & \underline{PTH} & \underline{Vit.\ D} & \underline{Calcitonin} \\ & & \uparrow & \uparrow & \downarrow \\ & & \downarrow & \uparrow & \downarrow \\ & & \downarrow & \uparrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow \end{array}$

- Disorders affecting the parathyroids: Hyposecretion (hypoparathyroidism):
- Causes:
- Thyroidectomy (most common cause)
- Idiopathic
- \(\) sensitivity of target tissues to PTH (pseudohypoparathyroidism)

Symptoms of hypoparathyroidism:

Are those of hypocalcemia:

Parasthesia, tingling lips, fingers, and toes,

carpopedal spasm, muscle cramps, tetanic contractions, convulsions (seizures)

Bronchospasm

Depression, anxiety, abdominal pain

Cataract...

■ Lab. Tests (hypoparathyroidism):

- ↓ blood [Ca⁺⁺]
- ↑ blood [PO₄--]
- ↓ urinary [cAMP]
- ↓ urinary [PTH]
- ↓ urinary [Ca⁺⁺]
- \downarrow urinary [PO₄⁻⁻]

\blacksquare R_x of hypoparathyroidism:

- Vitamin D

Calcifediol, Calcitriol, Ergocalciferol, α-Calcidol, Dihydrotachysterol...

Drug of choice for chronic cases

- Ca⁺⁺ supplement

Ca⁺⁺ rich diet

Ca⁺⁺ salts (carbonate, gluconate, chloride...)

Drug of choice in acute cases

- Thiazide diuretics could help, they inhibit excretion of Ca⁺⁺
- Teriparatide (synthetic rPTH)-recently approved in the management of osteoporosis; given SC

Hypersecretion (hyperparathyroidism):

- Causes:
- 1º hyperparathyroidism (adenomas)
- 2° hyperparathyroidism
- 2° to any cause of hypocalcemia e.g. malabsorption syndrome, renal disease...
- 3° hyperparathyroidism

Results from hyperplasia of the parathyroid glands and a loss of response to serum calcium levels; this disorder is most often seen in patients with chronic renal failure

Symptoms of hyperparathyroidism:

Are those of hypercalcemia: Generalized weakness and fatigue depression, bone pain, muscle pain (myalgias), decreased appetite, feelings of nausea and vomiting, constipation, polyuria, polydipsia, cognitive impairment, kidney stones and osteoporosis...

- Lab. Tests (hyperparathyroidism):
- ↑ blood [Ca⁺⁺]
- $-\downarrow$ blood [PO₄⁻⁻]
- \(\gamma\) urinary [cAMP]
- \tau urinary [PTH]
- ↑ urinary [Ca⁺⁺]
- \uparrow urinary [PO₄⁻⁻]

Bone x-ray → bone decalcification

\blacksquare R_x of hyperparathyroidism:

- Low Ca⁺⁺ diet
- Na⁺ phosphate
- Steroids e.g. Prednisolone... ↓ Ca⁺⁺ absorption
- Calcitonin
- Surgery (best Rx)
- Cinacalcet (calcimimetic) (oral tab) is used to treat secondary hyperparathyroidism in patients with end-stage renal disease who are on dialysis & also used to treat patients with 1° hyperparatyroidism & cancer of parathyroid gland

- Other drugs effective in the management of hypercalcemia:
- Diuretics
- e.g. Furosemide († Ca++ excretion)
- Plicamycin; inhibits bone resorption
- Biophosphonates
- Etidronate, Pamidronate...
- ↑ bone formation and ↓ bone resorption

Paget's disease

Rare bone disorder characterized by deminaralization of bone, disorganized bone formation, \(\gamma\) bone resorption, fractures, spinal cord injuries, deafness...

- \blacksquare $\mathbf{R}_{\mathbf{x}}$:
- Salmon calcitonin (was considered drug of choice) whether extracted from salmon fish or synthetic, S.C, I.M. Also effective in the management of osteoporosis in postmenopausal women
- Biophosphanates

Etidronate, zoledronate, alendronate, residronate, pamidronate... (most preferred drugs in the management of paget's disease). Such drugs are known as antiresorptive agents