

GUYTON AND HALL TEXTBOOK OF MEDICAL PHYSIOLOGY THIRTEENTH EDITION

Blood Types; Transfusion; Tissue and Organ Transplantation

Ebaa M Alzayadneh, PhD Associate Professor of Physiology

Early transfusions

- Red cell agglutination and lysis
- Severe transfusion reactions, often fatal
- In other cases, well-tolerated and beneficial
- Led to the discovery of red blood cell antigens and the practice of cross-matching
- >30 common antigens, many rare ones

The ABO System

- Red blood cell surface antigens: glycolipids or glycoproteins
- Present on all cells in the body, not just blood cells
- Agglutinogens: surface antigens (A,B)
 - Genes: A, B, O (maternal, paternal alleles)
 - Genotypes: OO, OA, OB, AA, BB, AB
- Agglutinins (immunoglobulins): anti-A, anti-B
- Occurance:
- O: 47%
- A: 41%
- B: 9%
- AB: 3%

Agglutinins

- Antibodies, mostly IgM and IgG
- Begin developing age 2-8 months, peak ~age 10 years
- Response to A and B antigens in foods, bacteria; initial exposures are environmental

Blood Groups

Genotype	Blood Type	Agglutinogens	Agglutinins
00	Ο		ANTI-A and ANTI-B
OA or AA	Α	Α	ANTI-B
OB or BB	В	В	ANTI-A
AB	AB	AB	

Blood Typing

Blood Type	Anti-A	Anti-B
Ο		
A	A A A A A A A A A A A A A A A A A A A	* • *
В		A REAL
AB	A REAL	

Transfusion reactions

- Red cells agglutinate
- Plug small vessels
- Physical distortion, phagocytic attack

→ hemolysis

 In some cases, immediate,

complement-

dependent hemolysis (depends on lg type ...lgM "hemolysins")

The Rh (rhesus) antigens

- Requires prior exposure to incompatible blood
- Six common antigens ("Rh factors")
 C, D, E, c, d, e
 - Each person is CDE, CDe, Cde, CdE, cDE, cDe, or cde
- D ("Rh positive") is prevalent (85% EA, 100% Africans) and particularly antigenic
- C and E can also cause transfusion reactions, generally milder

Anti-Rh Transfusion Reactions

• Rh+ blood into Rh- recipient:

-delayed mild transfusion reaction
-sensitization to further Rh+ transfusion
- agglutinins peak after 2-4 months

- 50% of Rh- are sensitized by 1st exposure
 - 20% after a second exposure
 - 30% are non-responders
- Rh matching to prevent immunization

Anti-Rh Transfusion Reactions

Naïve Rh- recipient

→ usually no reaction initially

- Within 2-4 weeks sufficient Ig for agglutination
 - → delayed reaction, usually mild hemolysis within tissue macrophages
- Any subsequent transfusion with Rh+ blood

→ potentially severe transfusion reaction

Hemolytic Disease of the NewbornClinical
Perspective(Erythroblastosis fetalis)

- ABO incompatibility (O mother and A or B fetus)
 - Unusual:
 - Most anti-A is IgM, does not cross placenta
 - ABO antigens not well developed in fetus
- Rh incompatibility (RhD+ fetus and Rh- mother)
 - Immunization due to fetal-maternal bleeding during delivery
 - Mother develops Anti-D agglutinins
 - Usually not a problem with first pregnancy
 - Worse with subsequent pregnancies

(3% EF second pregnancy, 10% with third)

Hemolytic Disease of the Newborn (Erythroblastosis fetalis)

How Rh hemolytic disease develops

© Encyclopædia Britannica, Inc.

Hemolytic Disease of the Newborn Clinical Perspective (Erythroblastosis fetalis)

- Maternal antibodies cross the placenta and cause agglutination and lysis of fetal erythrocytes
- Fetal macrophages convert hemoglobin to bilirubin → jaundice
- Anemic at birth; continued hemolysis 1-2 months
- Hepato- splenomegaly from extramedullary erythropoiesis
- May have permanent neurologic damage from deposition of bilirubin in neural tissues ("kernicterus")

- Repetitive removal of Rh-positive blood, replacement with Rh negative (400 ml exchange over 90 minutes)
- May be done several times over a few weeks
- Maternal antibodies disappear over 1-2 months so newborn's Rh-positive cells cease to be a target

- Provide exogenous anti-D antibodies to the mother in late pregnancy and just after birth
- These bind to D antigenic sites on fetal erythrocytes that enter the mother's circulation, preventing an immune response

- Single donation is 450 ml
- Processed into components
 - Packed Red Cells; Stored ~ 30- 40 days
 - Plasma (clotting factors); Frozen
 - Platelets; Stored for 8-10 days
 - White blood cells; Rarely used

- Occur because of mismatched blood
- <u>Recipient antibodies</u> react against <u>donor antigens</u>
- Either immediate or delayed agglutination and hemolysis
- Fever, chills, shortness of breath; potentially shock, renal shutdown
- Macrophages produce bilirubin
- With normal liver function, no jaundice unless ≥ 400 ml blood hemolyzed in < 1 day

- Products of hemolysis cause powerful renal vasoconstriction
- Immune-mediated circulatory shock
- Free hemoglobin can leak through glomerular membranes into tubules
 → high quantities may block tubules
- May require acute or even chronic hemodialysis