Erythropoiesis requirements Part II

Pathophysiology of Anemia 2nd week Lab tests Theory

Ebaa M Alzayadneh, PhD Associate Professor of

Physiology

By definition: Deficiency of Hemoglobin

- Blood loss (acute, chronic)
- After hemorrhage...
 - Fluid volume restored in 1 3 days
 - RBC concentration restored in 3-6 weeks
- Chronic blood loss can lead to iron deficiency, with hypochromic, microcytic anemia.

Clinical Perspective Aplastic Anemia

- Bone marrow failure caused by...
 - Radiation
 - Chemotherapy
 - Chemical toxins
 - Auto-immune
 - Idiopathic
- Supported by transfusions or treated by bone marrow transplantation

Perspective Megaloblastic Anemia

- Deficiency of Vitamin B₁₂ and / or Folic Acid
 - Pernicious anemia
 - Dietary deficiency
 - Malabsorption
- Impairs DNA replication, causing maturation failure
- Formation of large, fragile cells with bizarre shapes, which rupture easily, potentially causing profound anemia

Vitamin B₁₂ and Folic Acid

- Rapid, large-scale cellular proliferation requires optimal nutrition
- Cell proliferation requires DNA replication
- Vitamin B₁₂ and folate both are needed to make thymidine triphosphate (thus, DNA)
- Abnormal DNA replication causes failure of nuclear maturation and cell division...

Clinical Perspective Perspective

- Failure to absorb vitamin B₁₂
- Atrophic gastric mucosa...
 - Failure to produce intrinsic factor
- Intrinsic factor binds to vitamin B₁₂
 - Protects it from digestion
 - Binds to receptors in the ileum
 - Mediates transport by pinocytosis
- Vitamin B_{12} stored in liver, released as needed
- Usual stores: 1 3 mg
 Daily needs: 1 3 μg

Thus normal stores are adequate for 3 – 4 years

- Folic acid is present in green vegetables, some fruits, and meats
- Destroyed during cooking
- Subject to dietary deficiencies
- May also be deficient in cases of intestinal malabsorption
- Maturation failure may reflect combined B₁₂ and folate deficiency

- Hereditary conditions causing fragility
 - Hereditary spherocytosis
 - Sickle cell anemia
- Immune-mediated destruction
 - Erythroblastosis fetalis

- Anemia
 - Decreased viscosity
 - Decreased O₂ carrying capacity

Markedly decreased exercise capacity

Polycythemia

Secondary (RBC ~30%; 6-7 million/mm³)

- Chronic hypoxemia (heart or lung disease)
- Physiologic polycythemia
 - - Living at 14 17,000 feet
 - Markedly enhanced exercise capacity at altitude

Polycythemia Vera

- Clonal abnormality causing excessive proliferation
- Usually all lineages
- 7- 8 million RBCs / mm³; Hematocrit 60-70%
- Blood volume increased almost two-fold
- Hyperviscosity, up to 3-fold normal (10 x water)

- Increased viscosity decreases venous return
- Increased blood volume increases venous return
- 2/3 normotensive, 1/3 hypertensive
- The subpapillary venous plexus under the skin becomes engorged with slow-moving, de-saturated blood, producing a ruddy complexion with a bluish tint to the skin

LAB TESTS

- Packed Red Blood Cell Volume PCV
- Erythrocytes Sedimentation Rate ESR
- Red Blood Cell Osmotic Fragility Test

Packed Cell Volume (PCV)

- PCV is the ratio of the volume of packed red cells to the total blood volume.
 - Adult males: 40–54% (avg = 47%).
 - Adult females: 38–46% (avg = 42%)
- It decreases in cases of anemia and increases in polycythemia and dehydration.

Erythrocyte Sedimentation Rate (ESR)

- The rate at which red blood cells settle out when anticoagulated whole blood is allowed to stand for a period of one hour.
- The ESR is a simple, sensitive but <u>non-specific</u> screening test that indirectly measures the presence of inflammation in the body.
- It's increase reflects the tendency of red blood cells to settle more rapidly in the presence of inflammatory conditions, usually because of increases in plasma fibrinogen, immunoglobulins, and other acute-phase reaction proteins.
- Changes in red cell shape or numbers may also affect the ESR.

RBCs sedimentation

- The RBCs sediment because their density is greater than that of plasma. The sedimentation increases if stacking of RBCs (rouleaux formation) happens.
 - Rouleaux formation is possible because of the discoid shape of RBCs
- Normally, RBCs have negative charges on the outside of the cells, which cause them to repel each other and decreases or prevents rouleaux formation.
- Many plasma proteins have positive charges and can neutralize the negative charges of the RBCs, which allows for the formation of the rouleaux.
- Therefore, an increase in plasma proteins (present in inflammatory conditions) will increase the rouleaux formations, which settle more readily than single red blood cells leading to increased ESR during inflammation

Normal ESR values

- Adult males < 15mm/hr
- Adult females < 20mm/hr
- High ESR
 - Inflammation
 - > Anemia
 - ≻ Old age
 - > Pregnancy
 - > Technical factors: tilted ESR tube, high room temperature.
- Some interferences which decrease ESR:
- Abnormally shaped RBC (sickle cells and spherocytosis)
- Polycythemia
- Technical factors: low room temperature, delay in test performance (>2 hours), clotted blood sample

Osmotic fragility

- When RBCs reside in an isotonic medium, the intracellular and extracellular fluids are in osmotic equilibrium across the cell membrane, and there is no net influx or efflux of water.
- When RBCs reside in a hypertonic media, a net efflux of water occurs so the cells lose their normal biconcave shape, undergoing collapse.
- When RBCs reside in a hypotonic medium, a net influx of water occurs so the cells swell and the integrity of their membranes is disrupted resulting in **hemolysis**

(C) solutions on cell volume.

Osmotic fragility test

- A test designed to measures red blood cell's resistance to hemolysis when exposed to a series of increasingly dilute saline solutions.
- The susceptibility of RBCs to hemolysis is determined by:

Surface area to volume ratio.

- Cell membrane composition and integrity
- This test is mainly used to diagnose hereditary spherocytosis.

Osmotic Fragility Test

- From 0.7% to 0.5% there is no hemolysis.
- At the concentration of 0.48% hemolysis starts and the solution becomes red in color, but there are some settled RBCs in the tube.
- At the concentration of 0.36%, the solution is bright red and there are no settled RBCs (complete hemolysis).
- With spherocytosis hemolysis starts at the concentration of 0.68% which means RBCs can't resist hemolysis as they normally do (they are more fragile)

RBC Osmotic Fragility

- Increased red cell fragility (increased susceptibility to hemolysis) is seen in the following conditions:
 - Hereditary spherocytosis
 - > Autoimmune hemolytic anemia
 - > Toxic chemicals, poisons, infections, and some drugs.
 - Severe burns.
 - ✓ These cells have a low surface area: volume ratio
- Decreased red cell fragility (increased resistance to hemolysis) is seen with the following conditions:
 - > Thalassemia.
 - ➢ Iron deficiency anemia.

100%

80% -

60% -

40% -

Normal

Thalassemia

Hereditary spherocytosis

 \checkmark These cells have a <u>high surface area: volume ratio</u>