

Professor Tariq Aladily Department of Pathology The University of Jordan tnaladily@ju.edu.jo

By Lujain Ahmad

• Register your attendance with your university number

Make sure that the settings of your phone allow tracking location

- Go to settings > privacy>
- Iocation> services>
- make sure that location
- services is ON

THALASSEMIA

- Group of inherited disorders that result in decreased production of either α/β chains Decreased production on HGA
- Amount of synthesized Hg is below normal
- The deficiency in one of globin chains results in a relative increase in the other one, excessive unpaired chains will cause instability and hemolysis
- Mode of inheritance: autosomal recessive So there are salient carriers
- Common in Middle East, Africa and South East Asia (Old world countries)
- Resistant to infection by malaria falciparum Patient has thalassemia
- Normal Hg types in adults: HgA, HgA2, HgF
 (most affected type by thalassemia since it's composed of (α2/β2)

If it was beta-Thalassemia for example >> deficiency in beta chains production>> relative increase in alpha chains>> unstable Hb >> Hemolysis)

GENETICS

α-chain is encoded by 2 genes on chromosome 16
 (2 genes on each chromosome>> we have two chromosomes >> we have 4 genes for α)
 Most mutations in α-thalassemia are deletion While in beta the mutation is point mutation

- Deletion in 1,2 gene(s) results in a silent carrier Thalessemia minor
- Deletion of 4 genes results in hydrops fetalis after birth
- Deletion of 3 genes results in Hemoglobin H disease (extra βchains binds each other to a tetramer called Hg-H, extra γchains form Hg-Barts). Both have high affinity to oxygen

Here we have a chains but less than beta result in Hg H when we have extra beta chains and Hg Bart's when we have extra y

In this disease we have HqA but less than normal

GENETICS

B-chain is encoded by a single gene of chromosome 11

In total we have 2 genes

- Most mutations in β-thal are point mutations
- β⁰: no production of β-chain
- β^+ : decreased production of β -chain Less than normal
- β/β^+ :silent carrier or mild anemia (thal-minor) One gene is normal
- β^+/β^+ : thalassemia intermedia

The symptoms is worse than a

β⁰/β⁰ or β⁰/β⁺: thalassemia major (Cooley anemia)
 Both genes are not functioning or one is not functioning and the another produce little amount
 Extra α-chains remain uncoupled, causing hemolysis of RBCs

in spleen and erythroid precursors in bone marrow (ineffective erythropoiesis)

The extra a chains are not soluble

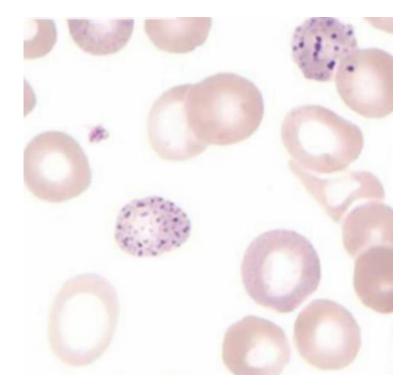
MORPHOLOGY

Hypochromic microcytic anemia

Target cells central redness in RBCs. Not specific for thalassemia, we will see them in the sickle
Basophilic stippling (ribosomes)(basophilic=blue, stippling= small dots) Small dots all over the cells and those dots are residual ribosomes
In thalassemia major:

- Peripheral blood: + poikelocytosis, nucleated RBC s Not mature
- Bone marrow:

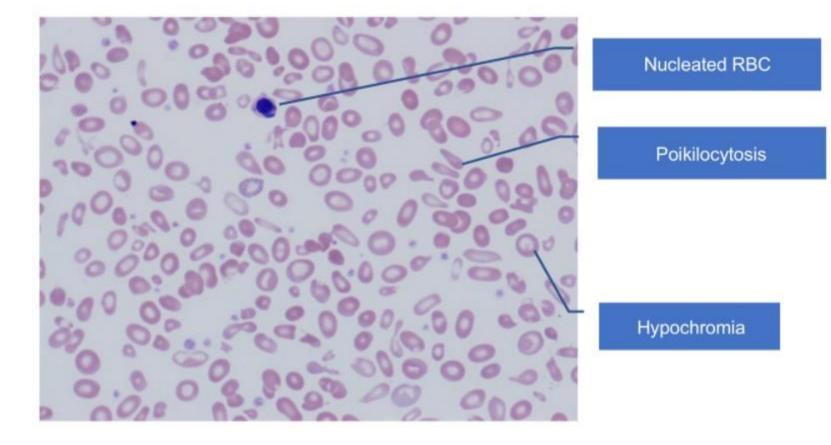
 înto bone, <u>hemosiderosis</u> (Hemochromatosis)


As a result of iron deposition

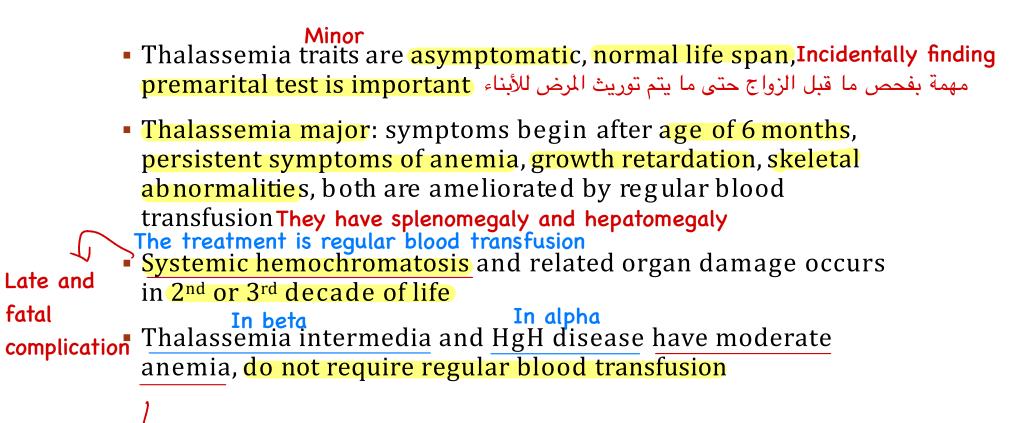
The iron will increase as a result of 2 things :

1-regular blood transfusions

2-the increase of erythropoietin will inhibit the hepcidine (hepcidine inhibits the absorption of iron)



BASOPHILIC STIPPLING OF RBCS



THALASSEMIA MAJOR BLOOD FILM

CLINICAL SYMPTOMS

DIAGNOSIS

How to distinguish if it thalassemia alpha or beta ?

By second test called:

- Hemoglobin electrophoresis test
- In all types of β-thal, there is increase in HgA2 and HgF percentages Cuz those patients have excess alpha
- In β-thal major, HgA is absent or markedly decreased We can see HgF
- In HgH disease, HgH and Hg Barts bands appear
- In α-thal carrier and minor, no abnormality is found. Genetic testing is available

Cuz in the carriers there are a decreased synthesis of a, but the percentage is constant

a يعني زي كانّه كلهم انخصم منهم

SICKLE CELL ANEMIA

- Most common familial hemolytic anemia worldwide
- Common in Africa, Middle East, Saudi Arabia, African Americans
- Resistant to malaria falciparum infection As in thalassemia
- Mode of inheritance: autosomal co-dominance
- Caused by single amino acid substitution (glutamic acid \rightarrow valine) in β -chain Point mutation
- In sickle cell disease (homozygous), Hg electrophoresis shows HgS and absent HgA Here both beta chains convert to sickle
- In sickle cell carrier (heterozygous), Hg electrophoresis shows both HgA and HgS bands

PATHOGENESIS

- In deoxygentated case, HgS tends to polymerize in a longitudinal pattern, distorting cell shape and creating sickle shape
- The change is reversible by re-oxygenation, however, with repeated sicklings, cell membrane is damaged and the RBC is shrunken permanently with a sickle shape so when they reach the spleen they will be destroyed
 The presence of normal HgA (carrier) and increased
- The presence of normal HgA (carrier) and increased HgF (newborn) inhibits HgS polymerization They don't develop any sickling
 Increased HgS concentration inside RBC promotes sickling
- Increased HgS concentration inside RBC promotes sickling (dehydration, acidosis), while decreased HgS concentration prevents sickling (the presence of additional α-thalassemia)

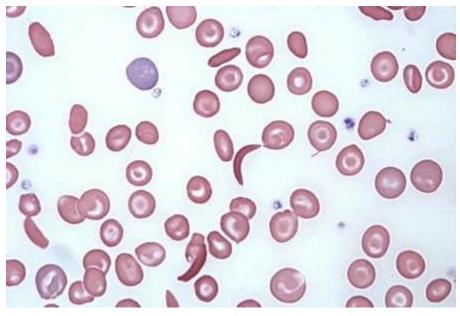
PATHOGENESIS

- Sickle-shaped RBCs take a longer time to pass through capillaries, non deformable
- Removed by macrophages in spleen (extravascular hemolysis)
- Also adhere to endothelial cells, may create a thrombus

So the patients die early

CLINICAL FEATURES

 Chronic moderate-severe hemolytic anemia, manifesting after the age of 6-months (dependent on fraction of sickled cells). The chronic course is interrupted by repeated sudden attacks of worsening anemia As a result of the triggers that promote the sickling of the cells Vaso-occlusive crisis (independent on fraction of sickled cells), results complicationin organ infarction. Commonly associated with systemic infection, (Thrombus) inflammation, dehydration and acidosis.
 Examples: Severe chest pain Hand-foot syndrome, acute chest syndrome, stroke, myocardial infarction, retinopathy, autosplenectomy for the bones of digits


- Susceptibility for encapsulated bacteria (pneumococcus, salmonella) Cuz of removal of spleen in autosplenoactomy
- Sickle cell carrier: asymptomatic

Autosplenoctomy (infarction of the spleen, hemolysis in spleen like any hemolytic anemia, but with aging spleen becomes infarcted and fibrotic, then disappears without any surgery)

LABORATORY FINDINGS

- Curved cells
 Routine blood smear: presence of sickle cells, target cells
- Sickling test: adding hypoxic agent to RBCs promote sickling to be sure الما تكون كمية ال cells قليلة بعمل هاد التيست
- Hemoglobin electrophoresis
- In sickle cell trait,

Blood smear is normal

