
Physiology

- Ohm's law: J O2 (flow)= DF (driving force)/R (resistance).
- 2. K (permeability)= (A area/ dx thickness)*(S solubility/ \sqrt{mm}).
- The least important factor among the four is the molecular weight because we take the square root of it.
- Permeability is how easy to cross the membrane. In the context of ions we refer to it as conductance which is the opposite of resistance. So, K=1/R so --> J=DF*K.
- 3. Combine solubility and molecular weight into a single value called the diffusion coefficient (D).
- 4. RMV (respiratory minute ventilation) = tidal volume*respiratory rate.
- Alveolar ventilation = 350*12=4.2L and anatomic dead space ventilation=150*12=1.8L
- 5. PO2 mixed expired= (150ml*150) + (350ml*100))/500ml=116
- 6. Poiseuille's Law: R=8 η l/ π r⁴ (Direct Measurement of Resistance) which requires:
- o Laminar flow (not turbulent).
- o Homogeneous fluid (e.g., water) not heterogeneous as the blood (contains plasma and RBCs).
- o Steady, non-pulsatile flow (steady flow with respect to time).
- These conditions are not typically met in physiological systems.
- The radius is the most important factor affecting R.
- 7. Work is how much ATP is utilized to support the respiratory system
- W= $\Delta P \times \Delta V$.
- 8. Inspiratory capacity: IC=IRV+VT=3.5 L
- 7. Functional residual capacity: FRC=ERV + RV = 2.2L
- 8. Vital capacity: VC= ERV+IRV+VT = 4.6L
- 9. TLC= VT+ ERV+IRV+RV=5.7 L

important

10. Helium dilution technique to measure Functional Residual Capacity (FRC):

C1V1=C2V2

C1V1=C2(V1+FRC)

C2

11. V/Q ratio: alveolar ventilation/ pulmonary blood flow

12. PDS= ADS + wasted volume

$$PDSV = \frac{VT X (P_A CO2 - P_{\hat{E}} CO2)}{P_A CO2}$$

PDSV= Physiological Dead Space Volume.

VT=Tidal Volume.

PACO2= Partial pressure of CO2 in the alveoli.

PE'CO2= Partial pressure of CO2 in the expired air.

$$PDSV = \frac{VT X (P_A CO2 - P_{\hat{E}} CO2)}{P_A CO2} = 500 X \frac{40 - 28}{40} = 150$$

Extra: How did we measure 28?

 $P_{\rm \hat{E}} CO2$ is the expired Co2 from the lungs, contains 350 ml aleovli + 150 ml ADS:

$$P_{\hat{E}}CO2 = \frac{Alev\ X\ P_ACO2 + ADS\ X\ atm\ Co2}{VT} = \frac{350\ X\ 40 + (150\ X\ 0)}{500} = 28$$

13. compliance= $\Delta V/\Delta P$

14. Law of Laplace: P=2T/r

- 1. At sea level, Patm is equal to 760 mmHg.
- 2. Percent of O2 in the outside air is 21%.
- 3. Outside air --> PO2 = 21%*760 = 159 \approx 160mmHg, $PN2\approx$ 600mmHg and PCO2 = 0.3 which is considered as \approx zero.
- 4. Every time we ascend approximately 5.5 km above sea level, both the atmospheric pressure (Patm) and the partial pressure of oxygen (PO₂) decrease by half.
- 5. Divisions 0–16: conductive zone, Divisions 17–23: respiratory (exchange) zone.
- 6. Division 0: Trachea, Division 1: Primary (main or mother) bronchus, Division 16: terminal bronchiole and Division 23: alveolus.
- 7. The anatomic dead space volume (ADSV) = 2 mL/kg.
- For example, a person weighing 75 kg has an ADSV of approximately 150 mL, which is often cited in textbooks as the typical adult ADSV.
- 8. When dry air is inhaled it contains O_2 and N_2 , with $PH_2O = 0$.

The conductive zone adds a third gas: H_2O vapor. At body temperature (37°C), $PH_2O = 47 \text{ mmHg}$, meaning atmospheric air becomes 100% saturated with water vapor.

So in the anatomic dead space, P02 = $(760-47) \times 21\% = 149 \approx 150 mmHg$ and PCO2 remains at zero.

- 9. In Alveolar Air, PO2 (PAO2) = 100 mmHg and PCO2=40mmHg.
- **10.** O2: Diffusion coefficient = 1, CO2 Diffusion coefficient = 20 and CO: Diffusion coefficient = 0.8.
- 11. Tidal volume= 500 ml (the volume of air inhaled or exhaled with each breath).
- 12. The volume of air in the lungs at rest is 2.2L
- 13. PO2 mixed expired=116mmHg
- 14. The blood volume forms 7% of the body's weight in males (if body weight was 70 kg), and 6% in females.
- This approximates 5000ml which is distributed throughout the CVS as follows: 3000ml in systemic veins (60%), 750ml in systemic arteries (15%), 450ml in pulmonary

- circulation (9%), 350ml in the cardiac chambers (7%), and 350ml in systemic capillaries (7%).
- In the lung, blood is found in 3 regions, 190ml in pulmonary arteries, 190ml in pulmonary veins, and 70ml in pulmonary capillaries and the alveoli have about 2500ml inside.
- 15. Systemic capillaries comprise 60% TBW in males (and 55% in females because they have more fat so there is less water => fat hates water). So: 60% x 70 kg (body weight) = 42L.

The 42L are divided into:

- a. 2/3 represent 28L that go to the intracellular fluid.
- b. 1/3 represent 14L that is divided into 2 further parts in the extracellular fluid:
- i. interstitial fluid taking 11L (this what we care about)
- ii. plasma taking 3L
- 16. Intrapleural pressure = -4.
- 17. Normally: R is small and negligible [ΔP of 1 mmHg is enough to overcome it].
- 18. Initial pulmonary artery pressure: 14 mmHg (calculated as 2/3 of 8 + 1/3 of 25).
- The pulmonary arterial pressure is mean pressure of systolic (25mmHg) and diastolic (8mmHg). Since the heart spends more time in diastole, the formula to calculate the mean pressure is 1/3 *systolic pressure + 2/3 * diastolic pressure).
- 19. Pulmonary hypertension: >20 mmHg.
- 20. Inspiratory Reserve Volume IRV= 3L
- 21. Expiratory Reserve Volume ERV=1.1
- **22.** Residual volume RV=1.1 (more in elderly)
- 23. Normal V/Q ratio = 1
- 24. If the V/Q is infinity, the PAO2 would be = 150 (same as the ADS)
- 25. Physiological dead space (PDS =ADS + wasted volume)
- In healthy individuals, PDSV is equal to ADS=150
- If there is wasted volume, the partial pressure of carbon dioxide (PCO2) would be zero, which reduces $P\hat{E}CO2$ and thus increases PDSV.

26. FEV1/FVC:

- normally it equals 80%
- In obstructive lung disease it decreases and can be as low as 20-30% in severe obstructive airway disease.
- In restrictive disorders have a near normal FEV1/FVC or sometimes more than normal.
- 27. surfactant-to-albumin (S/A) ratio in amniotic fluid is measured:

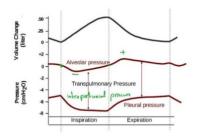
[مش متأكدة اذا حفظ بس احتياط]

- ->55 mg: Lungs are mature.
- 35-55 mg: Intermediate maturity.
- <35 mg: Lungs are immature.
- 28. Diagnosis of ARDS: The key diagnostic criterion for ARDS is when the PaO2/FiO2 ratio is <200.
- o FiO2 (Fraction of Inspired Oxygen)
- o PaO2 (Partial Pressure of Oxygen in Arterial Blood)
 - Example:
 - In a healthy individual:
 FiO2 = 21%, PaO2 = 100 mmHg
 100/0.21 = 500
 while inhaling pure oxygen (FiO2 = 100%), PaO2 = (500-600) mmHg very high
 600/1 = 600
 In ARDS patient,the ratio will NEVER exceed 200 (always < 200)
 Even When inhaling pure oxygen (FiO2 = 100%)

For example: FiO2 = 100%, PaO2 = 100 mmHg (100/1=100)

This low ratio is a hallmark of ARDS.

Lining Type Surface Tension		Cause (This column is additional for ur better understanding)	Pressure Required
Water	High	molecules at the air-water interface ower than Presence of proteins and solutes reduces	
Interstitial Fluid	Lower than water		
Surfactant	Minimal	Surfactant disrupts cohesive forces between water molecules, reducing surface tension	-4


ت مش ارقام بس مهم 😊

Extra table (Helpful for exam purposes):

Intrapleural Pressure (Ppl) - This is the pressure within the pleural cavity, the space between the lung and the chest wall. It is always negative (subatmospheric) during normal breathing.

Intrapulmonary Pressure (Ppul) - This is the pressure within the lungs (or the alveoli). It is also known as alveolar pressure.

Respiratory Stage	Intrapleural Pressure (Ppl)	Intrapulmonary Pressure (Ppul) Negative (lower than atmospheric) to draw air in	
During Inspiration	More negative (subatmospheri c) as the chest expands		
At the End of Inspiration	Most negative (subatmospheri c) due to full lung expansion	Equal to atmospheric pressure (no airflow)	
During Expiration	Less negative (subatmospheri c), or slightly positive during forced expiration	Positive (greater than atmospheric) to push air out	
At the End of Expiration	Less negative (subatmospheri c) or slightly positive during forced expiration	Equal to atmospheric pressure (no airflow)	

اللهم صلِّ وسلِّمْ عَلَّے نَبِيْنَا مُحَمد