# **Respiratory System Infections**

#### **Anatomical Location of Viral Syndromes**



### Influenza

- A common viral disease of the lower respiratory system caused by an **orthomyxovirus**
- 15-20% of world population
- 3-5 million sever cases
- 500000 death
- Influenza is pervasive worldwide and causes 3,000–50,000 deaths each year in the United States.
- Influenza infections are most typically characterized by **fever**, **chills**, and **body aches**. This is followed by symptoms similar to the common cold that may last a week or more

## Common Cold Vs Influenza

| Sign/Symptom     | Common Cold           | Influenza               |
|------------------|-----------------------|-------------------------|
| Fever            | Low (37.2 °C [99 °F]) | High (39 °C [102.2 °F]) |
| Headache         | Common                | Common                  |
| Aches and pains  | Mild                  | Severe                  |
| Fatigue          | Slight                | Severe                  |
| Nasal congestion | Common                | Rare                    |
| Sneezing         | Common                | Rare                    |

#### Myalgias, arthralgias and loose stool

- In general, influenza is self-limiting. However, serious cases can lead to pneumonia and other complications that can be fatal. Such cases are more common in the very young and the elderly
- The influenza virus is primarily transmitted by direct contact and inhalation of aerosols

### Reye syndrome

- A **complication of influenza** that occurs primarily in children and teenagers
- Swelling in the liver and brain, and may progress to neurological damage, coma, or death.
- Reye syndrome may follow other viral infections, like **chickenpox**, and has been associated with the use of **aspirin**.
- the CDC and other agencies recommend that aspirin and products containing aspirin never be used to treat viral illnesses in children younger than age 19 years.

- RS is primarily a children's disease, although it can occur at any age. It is often misdiagnosed. Symptoms may include:
  - Persistent or recurrent vomiting
  - Listlessness
  - Personality changes such as irritability or combativeness
  - Disorientation or confusion
  - Delirium
  - Convulsions
  - Loss of consciousness

#### Influenza virus

#### The RNA genome

- Seven or eight **segments**, each coated with ribonucleoprotein and encoding one or two specific viral proteins.
- The influenza virus is surrounded by a lipid membrane envelope, and **two of the main antigens** of the influenza virus are
  - The spike proteins hemagglutinin (H) and neuraminidase (N)
  - The hemagglutinin protein to bind to sialic acid receptors on host
  - Neuraminidase, which cleaves sialic-acid receptors to allow progeny viruses to make a clean exit



### The influenza viruses

#### • There are three genetically related influenza viruses, called A, B, and C.

|                     | Influenza A virus     | Influenza B virus | Influenza C virus |
|---------------------|-----------------------|-------------------|-------------------|
| Severity            | Severe                | Moderate          | Mild              |
| Animal reservoir    | Yes                   | No                | No                |
| Genome segments     | 8                     | 8                 | 7                 |
| Population spread   | Epidemic and pandemic | Epidemic          | Sporadic          |
| Antigenic variation | Shift/drift           | Drift             | Drift             |

- The most virulent group is the influenza A viruses, which cause seasonal pandemics of influenza each year.
- Influenza A virus can infect a variety of animals, including pigs, horses and even whales and dolphins.
- Influenza B virus is less virulent and is sometimes associated with epidemic outbreaks.
- Influenza C virus generally produces the mildest disease symptoms and is rarely connected with epidemics.
- Neither influenza B virus nor influenza C virus has significant animal reservoirs.

### The influenza A viruses

#### • The influenza A viruses

- Have different subtypes
  - 18 known subtypes of hemagglutinin and 11 known subtypes of neuraminidase.
- Influenza viruses are serologically characterized by the type of H and N proteins that they possess.
- Of the nearly 200 different combinations of H and N, only a few, such as the H1N1 strain, are associated with human disease.

### Influenza virus infections

- Elicit a **strong immune response**, particularly to the hemagglutinin protein
- Unfortunately, the antigenic properties of the virus change relatively rapidly, so new strains are evolving.
- When an influenza virus gains a new hemagglutinin or neuraminidase type, it is able to evade the host's immune response and be successfully transmitted, often leading to an epidemic.

## **Evolutionary changes**

- Antigenic Variation in influenza viruses
  - Antigenic **drift** and Antigenic **shift**
- Antigenic drift is the result of point mutations causing slight changes in the spike proteins hemagglutinin (H) and neuraminidase (N).
- Antigenic shift is a major change in spike proteins due to gene reassortment.
  - Influenza viruses swap gene segments. This genetic exchange is possible due to the segmented nature of the viral genome
  - Occurs when two differing influenza viruses co-infect a cell.



Virus B

- The rate of antigenic variation in influenza viruses is very high, making it difficult for the immune system to recognize the many different strains of Influenza virus.
- Although the body may develop immunity to one strain through natural exposure or vaccination, antigenic variation results in the continual emergence of new strains that the immune system will not recognize.
  - This is the main reason that vaccines against Influenza virus must be given annually.
- Each year's influenza vaccine provides protection against the most prevalent strains for that year, but new or different strains may be more prevalent the following year.

## Spanish flu

- The most lethal influenza pandemic in recorded history occurred from 1918 through 1919.
- An antigenic shift involving the recombination of avian and human viruses
  - A new H1N1 virus.
- Killed as many as 40 million to 50 million
- Originated in the United States.
- the conditions of World War I greatly contributed to the spread of this disease.
  - Crowding, poor sanitation, and rapid mobilization of large numbers of personnel and animals facilitated the dissemination of the new virus once it appeared.

## Bird Flu (Avian Influenza)

#### • H5N1

- Cause severe respiratory symptoms.
- People who work with poultry, water fowl (like geese and ducks) and livestock are most at risk.
- Infected animal's body fluid
- It's extremely rare for it to spread from person to person

## H1N1 swine flu

- H1N1 flu to be a pandemic in 2009
- That year the virus caused an estimated 284,400 deaths worldwide. In August 2010, WHO declared the pandemic over
- It's called swine flu because it's similar to a flu virus that affects pigs (swine).
- The virus leads to a lung (respiratory) disease in pigs.

| Feature        | Influenza<br>(Seasonal Flu) | <b>Bird Flu</b>                     | Swine Flu               |
|----------------|-----------------------------|-------------------------------------|-------------------------|
| Host Species   | Humans                      | Birds                               | Pigs and humans         |
| Human Impact   | Widespread, annual          | Rare in humans                      | Widespread in pandemics |
| Mortality Rate | Relatively low              | Very high                           | Similar to seasonal flu |
| Transmission   | Person-to-person            | Contact with birds                  | Person-to-person        |
| Vaccination    | Annual flu vaccine          | Limited<br>experimental<br>vaccines | Covered in flu vaccines |

## Laboratory diagnosis

- Variety of Rapid influenza diagnostic tests (RIDTs).
  - These tests are inoculated by point-of-care personnel and give results within 15–20 minutes.
  - Unfortunately, these tests have variable sensitivity and commonly yield false negative results.
- Hemagglutination of erythrocytes (due to hemagglutinin action) or complement fixation.
- Patient serum antibodies





#### Treatment

- Three drugs that inhibit influenza neuraminidase activity are available: inhaled zanamivir, oral **oseltamivir** (Tamiflu), and intravenous peramivir.
  - Can shorten the course of the disease.
  - Should start less than 48 hours from exposure or symptom for prophylaxis or treatment
  - Nursing home, young, old, pregnant, chronic lung, immunocompromised



- A more effective means of controlling influenza outbreaks, though, is vaccination.
  - Every year against the strains expected to be predominant.
  - three or four viruses are selected—the two most prevalent influenza A strains and one or two influenza B strains.
  - Most of the influenza vaccines over the past decade have had an effectiveness of about 50%

# **Bronchiolitis/RSV**

Inflammation of bronchioles



- RSV is the most common cause of bronchiolitis and pneumonia in children younger than 1 year of age
- Pediatric less than 2 years (peak at 6 months)
- Runny nose , cough, wheeze, cyanosis, fever, fatigue and reduce activity
- Difficulty feeding due to **respiratory distress**.
- Wheezing and crackles on auscultation. Tachypnea (rapid breathing),Retractions (intercostal, subcostal),Nasal flaring and Cyanosis in severe cases.

### Treatment

- Assess severity
- Determine risks factors
- Supportive



Evade immune system and antibodies production: no natural immunity Reinfection not sever

## Croup

- Laryngiotrachibronchitis
- Viral (most common: parainfluenza virus).
- Cough (seal like, barking)
- More in fall
- Inspiratory stridor (An obstruction in the extrathoracic region), runny nose,fever, hoarseness
- Most common: parpainflunza virus, RSV
- Treatment:
  - Supportive
  - If sever: epinephrine, dexamethasone, O2
- D DX: Bacteria Tracheitis (Saureus)



Steeple sign



| Feature            | Croup                                                                   |  |
|--------------------|-------------------------------------------------------------------------|--|
| Etiology           | Viral (most common: parainfluenza virus).                               |  |
| Age Group          | Typically affects children 6 months to 3 years.                         |  |
| Onset              | Gradual, often preceded by cold-like symptoms (runny nose, fever, mild  |  |
|                    | cough).                                                                 |  |
| Key Symptoms       | - Barking, "seal-like" cough Inspiratory stridor Hoarseness.            |  |
| Severity           | Usually mild to moderate (can be severe in rare cases).                 |  |
| <b>Response to</b> | Stridor improves with humidified air, nebulized epinephrine, or         |  |
| Treatment          | corticosteroids.                                                        |  |
| Voice Changes      | Hoarseness common.                                                      |  |
| Fever              | Low-grade fever.                                                        |  |
| Airway             | Rarely requires intubation unless severe (e.g., impending respiratory   |  |
| Management         | failure).                                                               |  |
|                    | - Mild cases: Supportive care (humidified air, hydration)               |  |
| Treatment          | Moderate/severe cases: Corticosteroids (e.g., dexamethasone), nebulized |  |
|                    | epinephrine.                                                            |  |

| Feature          | Bacterial Tracheitis                                                                     |  |
|------------------|------------------------------------------------------------------------------------------|--|
| Etiology         | Bacterial (most common: Staphylococcus aureus; others include Streptococcus, Moraxella). |  |
| Age Group        | Slightly older children (5–8 years), but can occur in younger children.                  |  |
| Onset            | Rapid progression following a viral illness or can appear suddenly.                      |  |
| Key Symptoms     | - High fever Severe stridor (inspiratory and expiratory) Toxic appearance (lethargy,     |  |
|                  | cyanosis, severe distress).                                                              |  |
| Severity         | Severe and life-threatening due to airway obstruction from thick purulent secretions.    |  |
| Response to      | Minimal or no response to treatments for croup (e.g., epinephrine).                      |  |
| Treatment        |                                                                                          |  |
| Voice Changes    | Hoarseness is less common but may occur.                                                 |  |
| Fever            | High fever.                                                                              |  |
| Toxic Appearance | Frequently present: patient appears toxic and ill.                                       |  |
| Airway           | Ilish vist of simpler shotmestical interbation is after a second to manage as anoticas   |  |
| Management       | High risk of airway obstruction; intubation is often required to manage secretions.      |  |
| Treatment        | - Requires broad-spectrum IV antibiotics (e.g., ceftriaxone + vancomycin) Airway         |  |
|                  | clearance under controlled conditions (e.g., bronchoscopy or suctioning).                |  |

## Viral bronchitis/chest cold

• Viral bronchitis refers to inflammation of the bronchi (large airways) caused by a viral infection. It is one of the most common causes of acute bronchitis and is usually self-limited, resolving within a few weeks.

#### • Common Viruses:

- Influenza virus, Parainfluenza virus, Respiratory Syncytial Virus (RSV), Adenovirus and Coronavirus
- **Cough** (hallmark symptom):
  - Begins as dry and unproductive.
  - Progresses to a productive cough with mucus (clear, yellow, or green sputum).
  - For 10-20 days

Other Symptoms:

• Low-grade fever, Fatigue, **Wheezing** or mild dyspnea, Sore throat (often a prodromal symptom), Chest discomfort or tightness (due to coughing).

• Signs:

- **Rhonchi or wheezing** on auscultation (which may improve after coughing).
- Most cases resolve within 2–3 weeks.
- Supportive Care:
  - Hydration: To thin mucus and maintain airway clearance.
  - Rest: Allow recovery.
  - Analgesics/Antipyretics: Acetaminophen or ibuprofen for fever and discomfort.
  - Cough Suppressants (e.g., dextromethorphan)
- Bronchodilators:
  - Short-acting beta-agonists (e.g., albuterol) may be used if wheezing or bronchospasm is present

### Viral Pneumonia

- Viruses cause fewer cases of pneumonia than bacteria;
- Several viruses can lead to pneumonia in children and the elderly.
  - adenoviruses, Coronaviruses, influenza viruses, parainfluenza viruses, and respiratory syncytial viruses.
- The signs and symptoms produced by these viruses can range from mild cold-like symptoms to severe cases of pneumonia,
  - the virulence of the virus strain and the strength of the host defenses

#### Coronaviruses.

- Large family of viruses that usually cause mild to moderate upperrespiratory tract illnesses
  - Severe acute respiratory syndrome (SARS)
  - Middle East respiratory syndrome (MERS)
  - SARS-CoV-2
- zoonotic infections
- Bats and civet cats are thought to have been the reservoirs for SARS;
- Camels seem to be the reservoir for MERS.



#### • SARS (2002, china)

- Fever, chills, and body aches which usually progressed to pneumonia.
- Within about 1 year, more than 8,000 people experienced influenza-like symptoms and nearly 800 people died.
- 10% fatality rate
- No human cases of SARS have been reported anywhere in the world since 2004.



- MERS (2012) :
  - Emerged in 2012
  - Fever, cough, and shortness of breath which often progress to pneumonia or kidney failure; GI symptoms
  - 35% people with MERS have died.
  - Sporadic MERS cases continue to occur, primarily in the Arabian Peninsula.
  - As of 2015, over 1,300 people in 27 countries have been infected.
    - 500 people have died.
- There are no specific treatments for either MERS or SARS.

## COVID-19

- SARS-CoV-2, which emerged in 2019 and causes coronavirus disease 2019 (COVID-19)
- Fever, cough, loss of smell and taste, fatigue myalgia, diarrhea and GI symptoms



| Feature                        | SARS                                     | MERS                                   | COVID-19                                                               |
|--------------------------------|------------------------------------------|----------------------------------------|------------------------------------------------------------------------|
| Causative Virus                | SARS-CoV                                 | MERS-CoV                               | SARS-CoV-2                                                             |
| Year Identified                | 2002                                     | 2012                                   | 2019                                                                   |
| Primary Region of<br>Outbreak  | China, spread to other<br>countries      | Middle East (Saudi Arabia, UAE)        | Worldwide                                                              |
| Reservoir Host                 | Bats                                     | Bats                                   | Bats                                                                   |
| Intermediate Host              | Civet cats                               | Camels                                 | (uncertain)                                                            |
| Primary Mode                   | Respiratory droplets                     | Close contact with camels              | Respiratory droplets, aerosols                                         |
| Human-to-Human<br>Transmission | Yes, but less efficient                  | Limited                                | Highly efficient                                                       |
| Community Spread               | Moderate                                 | Rare                                   | Widespread                                                             |
| <b>Incubation Period</b>       | 2-10 days                                | 2–14 days                              | 2–14 days                                                              |
| Common Symptoms                | Fever, cough, shortness of<br>breath     | Fever, cough, shortness of breath      | Fever, cough, fatigue, shortness of breath, <b>loss of smell/taste</b> |
| Severe Symptoms                | Pneumonia, acute<br>respiratory distress | Pneumonia, kidney failure, ARDS        | Pneumonia, ARDS, multi-organ failure                                   |
| Case Fatality Rate<br>(CFR)    | ~10%                                     | ~34%                                   | ~1-2% globally (varies by region/age)                                  |
| Total Cases                    | ~8,000                                   | ~2,600 (as of 2023)                    | >770 million (as of 2023)                                              |
| Global Spread                  | Epidemic                                 | Limited outbreaks                      | Pandemic                                                               |
| Vaccines                       | None                                     | None                                   | Multiple vaccines developed                                            |
| Antiviral Treatments           | Supportive care                          | Supportive care                        | Antiviral drugs (e.g., remdesivir)                                     |
| <b>Control Measures</b>        | Isolation, quarantine, masks             | Isolation, contact with camels avoided | Masks, vaccines, social distancing                                     |

| Family           | Examples                            |
|------------------|-------------------------------------|
| Orthomyxoviridae | Influenza A, B, C, D                |
| Coronaviridae    | SARS-CoV, MERS-CoV, SARS-CoV-2      |
| Paramyxoviridae  | RSV, Parainfluenza, Metapneumovirus |
| Picornaviridae   | Rhinovirus,                         |
| Adenoviridae     | Adenoviruses                        |
| Reoviridae       | Reoviruses                          |
| Herpesviridae    | Cytomegalovirus (CMV)               |
| Togaviridae      | Rubella virus                       |
| Paramyxoviridae  | Measles virus                       |
| Bunyaviridae     | Hantaviruses                        |