Clinical Conditions Summary

Topic 1:

- Osteogenesis Imperfecta: brittle bone disease, is a disorder caused by defects in the formation of bone, leading to fragile bones that break easily.

Genetic Defect	Pathophysiology	Mode of Inheritance
- Mutations in the genes that	- Type I collagen is a structural protein in	- Types I – IV:
encode type I collagen , which is	bone, acting like rebar in concrete.	Mostly autosomal
crucial for bone strength.		dominant.
	- Mutated collagen leads to:	Recurrence Risk: 50% if
- 90% of cases are due to	Improper helix formation \rightarrow weak or	one parent is affected.
mutations in:	unstable collagen fibers \rightarrow abnormal or	
COL1A1 (on chromosome 17) and	insufficient bone matrix \rightarrow bone fragility.	- Types VII – VIII and
COL1A2 (on chromosome /).		other rare types:
	Clinical Effects:	Autosomal recessive.
These genes encode the pro- α 1(I)	1. Bone Fragility: Frequent fractures,	Recurrence Risk: 25% If
and pro- $\alpha^2(I)$ chains that form the	deformities (e.g., scoliosis), short stature.	both parents are carriers.
triple helix of type I collagen.	O. Estas ababatal Manifestationas DL - /	
Mutations often involves	2. Extra skeletal Manifestations: Blue/gray	
- Mutations often involve:	scierae, dentinogenesis imperfecta, nearing	
1 Missense mutations replacing	1055.	
alycine with another amino acid in	- Severity depends on the type of mutation:	
the center of the triple helix	Give in substitution \rightarrow severe	
structure of type I collagen, causing	Reduced collagen production \rightarrow milder	
instability and poorly formed fibrils.		
(the most common mutation).	- Type I is mild but Type II is very severe	
	and lethal.	
2. Post-translational modification		
defects (e.g. issues with		
hydroxylation or glycosylation of		
proline/lysine residues result in		
unstable collagen fibrils).		
3. In rarer types (e.g., type VII, VIII),		
mutations affect collagen processing		
enzymes, not the collagen genes		
themselves.		

Topic 2:

- Xeroderma Pigmentosum: A Disease of Faulty DNA Repair

Genetic Defect	Pathophysiology	Mode of Inheritance
- Mutations in any of the 7 genes involved in the nucleotide excision repair (NER) pathway, which normally repairs UV- induced DNA damage (e.g.	- Normally, NER fixes UV-induced DNA damage, but in XP, the DNA repair system (nucleotide excision repair (NER)) is broken due to genetic mutations.	Autosomal Recessive (meaning both copies of the gene must be defective for the disease to manifest).
pyrimidine dimers).	- Inevitable consequence of UV exposure \rightarrow DNA damage (pyrimidine dimers) \rightarrow	- Recurrence risk if both parents are carriers
 Affected Proteins: Helicases (unwind DNA), 	because of defective NER \rightarrow Damage isn't repaired \rightarrow Mutations accumulate \rightarrow Skin	(heterozygous):
endonucleases (cut damaged DNA), exonucleases (remove	cells turn cancerous.	25% affected 50% chance the child will be
damaged bases), polymerases (fill gaps), and ligases (rejoin DNA).	 Clinical Effects: 1. Skin Manifestations: Dry, scaly skin 	a carrier 25% chance the child will be
- Expression of XP requires	(xeroderma), freckling, abnormal skin pigmentation (pigmentosum), and 1000-	unanected/non-carrier.
mutations.	10. Primarily in sun-exposed parts of the	
	sources of UV light (e.g., sunlight).	
	2. Neurological Symptoms (30% of cases): Neurodegeneration due to unrepaired.	
	3. Severe, potentially lethal malignancies	
	4. Cataract.	

Topic 3:

1. Cystic Fibrosis (CF): the most common single-gene disorder in North America.

Genetic Defect	Pathonhysiology	Mode of
Genetic Beleet	T attrophysiology	Inheritance
- Caused by mutations in the CFTR gene.	- Normally CFTR encodes cyclic AMP-regulated chloride ion channels that span the membranes of specialized epithelial cells, such as those that line the bowel and	Autosomal recessive
- Over 2,000 mutations identified; most common is F508del (3-base deletion \rightarrow loss of phenylalanine).	lung. In addition, CFTR is involved in regulating the transport of sodium ions across epithelial cell membranes.	child if both parents are carriers.
- Mutations are classified into 6 classes (e.g., no protein synthesis, defective trafficking, reduced	- Mutations in the CFTR gene \rightarrow defective ion transport \rightarrow thick mucus in lungs/pancreas \rightarrow obstruction, infections (e.g., Pseudomonas), pancreatic insufficiency, and high sweat chloride.	
function).	> Clinical effects:	
Mutation Class Molecular Defect Class I No protein synthesis (nonsense/stop mutations) Class II Misfolded protein degraded in proteasomes	1. Lungs: Thick, dehydrated mucus \rightarrow chronic infections (Pseudomonas, S. aureus) \rightarrow inflammation \rightarrow fibrosis and airwy obstruction.	
Class III Channel reaches surface but fails to open Class IV Reduced CI ⁻ conductance Class V Splicing/promoter defects reduce CFTR mRNA	2. Pancreas: Obstructed ducts \rightarrow pancreatic insufficiency (malabsorption, diabetes).	
Class VI Accelerated turnover at cell surface	3. Sweat Glands: CI^{-} cannot be reabsorbed \rightarrow salty sweat (diagnostic hallmark).	
	4. Reproductive Tract: Absent vas deferens (CBAVD) in males \rightarrow sterile.	
	5. Meconium ileus: thickened obstructive intestinal matter (in 15%-20% of newborns).	

- The combination of airway obstruction, inflammation, and infection leads to destruction of the airways and lung tissue, resulting eventually in death from pulmonary disease in more than 90% of CSF patients.

- Severe Mutations (e.g., F508del): complete lack of chloride ion channel production or in channels that cannot migrate to the cell membrane. Patients homozygous for these mutations nearly always have pancreatic insufficiency.

- Other mutations (e.g., R117H, a missense mutation) result in ion channels that do proceed to the cell membrane but respond poorly to cyclic AMP and consequently do not remain open as long as they should. The phenotype is thus milder, and patients who have this mutation are less likely to have pancreatic insufficiency.

2. Retinoblastoma: the most common childhood eye tumor.

Genetic Defect	Pathophysiology	Mode of Inheritance
- Mutations in the RB1 tumor suppressor gene.	- Normally the RB1 gene produces the pRb protein, a critical regulator of cell division. In its active state, pRb binds to	- 60% sporadic (somatic mutations only, not transmitted to the affected individual's offsprings).
Inherited mutation (1st hit) + somatic mutation (2nd hit) in retinal cells → tumor.	G1 to S phase in the cell cycle - essentially acting as a "brake" on cell growth. When cell division is needed, cyclin-dependent kinases phosphorylate pRb, causing it to release E2F and allow controlled cell proliferation.	- 40% inherited (autosomal dominant): 30% are caused by new mutations, usually from the father and 10% are inherited from a parent who has the mutation.
	- However, mutations that disable RB1 create a dangerous situation: without functional pRb to restrain E2F, cells lose this vital brake and can divide uncontrollably. This unchecked cell division in retinal cells leads to tumor formation , specifically retinoblastoma.	- Offspring risk: 50% if a parent carries RB1 mutation.
	- They are also susceptible to other types of cancer later in life. In particular, about 15% of those who inherit an RB1 mutation later develop osteosarcomas (malignant bone tumors). Other common second cancers include soft tissue sarcomas and cutaneous melanomas.	

DISEASE	FEATURES	TYPE OF REPAIR DEFECT
Xeroderma pigmentosum	Skin tumors, photosensitivity, cataracts, neurological abnormalities	Nucleotide excision repair defects, including mutations in helicase and endonuclease genes
Cockayne syndrome	Reduced stature, skeletal abnormalities, optic atrophy, deafness, photosensitivity, mental retardation	Defective repair of UV-induced damage in transcriptionally active DNA; considerable etiological and symptomatic overlap with xeroderma pigmentosum and trichothiodystrophy
Fanconi anemia	Anemia; leukemia susceptibility; limb, kidney, and heart malformations; chromosome instability	As many as eight different genes may be involved, but their exact role in DNA repair is not yet known
Bloom syndrome	Growth deficiency, immunodeficiency, chromosome instability, increased cancer incidence	Mutations in the reqQ helicase family
Werner syndrome	Cataracts, osteoporosis, atherosclerosis, loss of skin elasticity, short stature, diabetes, increased cancer incidence; sometimes described as "premature aging"	Mutations in the reqQ helicase family
Ataxia-telangiectasia	Cerebellar ataxia, telangiectases,* immune deficiency, increased cancer incidence, chromosome instability	Normal gene product is likely to be involved in halting the cell cycle after DNA damage occurs
Hereditary nonpolyposis colorectal cancer	Proximal bowel tumors, increased susceptibility to several other types of cancer	Mutations in any of six DNA mismatch-repai genes

3. Huntington Disease (HD):

Genetic Defect	Pathophysiology	Mode of Inheritance
 CAG repeat expansion located on exon 1 in HTT gene (≥36 repeats = pathogenic). 	- Huntington disease is caused by an abnormal CAG trinucleotide repeat expansion in the HTT gene, which encodes the huntingtin protein.	- Autosomal dominant (50% risk). - Anticipation (earlier
Normal: ≤26 repeats Intermediate: 27-35 Reduced penetrance: 36-39 Full penetrance: ≥40	- The expanded CAG repeats result in an abnormally long polyglutamine tract in the huntingtin protein. This altered protein forms toxic aggregates inside neurons, particularly in the striatum (a brain region critical for movement control).	onset in next generations, especially paternal transmission).
	 Clinical effects: 1. Progressive loss of motor control and Psychiatric disorders. 	
	2. Substantial loss of neurons in the brain, which is detectable by (MRI).	
	3. Decreased glucose uptake in the brain , an early sign of the disorder, can be detected by positron-emission tomography (PET).	
	4. In some patients, the disease leads to a loss of 25% or more of total brain weight.	
	5. Patients with HD experience difficulties in swallowing; aspiration pneumonia is the most common cause of death.	
	6. Cardiorespiratory failure and subdural hematoma (due to head trauma) are other frequent causes of death.	
	7. The suicide rate among HD patients is 5 to 10 times higher than in the general population.	

4. Marfan Syndrome:

Genetic Defect	Pathophysiology	Mode of Inheritance
 Mutations in FBN1 (fibrillin-1). Most are missense mutations (dominant-negative effect: the abnormal fibrillin proteins bind to and disable many of the normal fibrillin proteins produced by the normal allele). Some are frameshift/nonsense 	 Normally Fibrillin-1 is critical for elastic fiber formation in connective tissues. Fibrillin-1 Dysfunction→ Mutations disrupt tissue integrity → aortic weakness (risk of dissection), lens dislocation, and bone overgrowth. Mutant fibrillin fails to bind TGF-β → excessive TGF-β activity → contributes to aortic dilatation 	 Autosomal Dominant: One mutated FBN1 allele is sufficient to cause the disorder. Risk to Offspring: 50% chance of inheriting the mutation if one parent is affected.
 mutations (truncated protein). 2. Rarely, mutations in TGFBR2 (transforming growth factor β receptor 2) can mimic Marfan 	 and skeletal abnormalities. Clinical Effects (Pleiotropy): 1. Ocular: Myopia, ectopia lentis (lens dislocation) 	
syndrome.	2. Skeletal: Long limbs (dolichostenomelia), arachnodactyly, scoliosis, chest deformities (pectus excavatum ("hollow chest"), pectus carinatum ("pigeon chest")).	
	3. Cardiovascular: Aortic root dilatation (life- threatening dissection risk), mitral valve prolapses (cusps of the mitral valve protrude upward into the left atrium during systole).	

Note: FBN2 gene are associated with a related but distinct disorder called Congenital Contractural Arachnodactyly (share arachnodactyly and some skeletal features but lacks the life-threatening cardiovascular and ocular complications of Marfan syndrome).

Topic 4:

1. Hemophilia A: the most common of the severe bleeding disorders.

Genetic Defect	Pathophysiology	Mode of Inheritance
- Gene: F8 encoding	- Deficient factor VIII $ ightarrow$ impaired clotting cascade $ ightarrow$	- X-linked recessive:
factor VIII.	Fibrin formation is affected, resulting in prolonged and	Males affected and
	often severe bleeding from wounds and hemorrhages in	females carriers.
Mutation Types:	the joints and muscles.	
1. Chromosome inversion		- 50% risk for carrier
(45% of severe cases).	Clinical effects:	mothers to pass to sons .
	1. Bruising is often seen.	
2. Nonsense/frameshift		- Manifesting
(severe hemophilia,	2. Hemarthroses (bleeding into the joints) are common	heterozygotes: 10% of
truncated protein).	in the ankles, knees, hips, and elbows.	female carriers show mild
2 Misses		symptoms.
3. MISSENSE	3. These events are often painful, and repeated	
(mid/moderate	episodes can lead to destruction of synovium and	
functional protein)	aiminished joint function.	
iunctional proteinj.	A Intracranial hemorrhages can occur and are a leading	
- Many of the point	cause of death	
mutations take place at		
methylated CG	5 Platelet activity is normal in hemophiliacs so minor	
sequences, which are hot	lacerations and abrasions do not usually lead to	
spots.	excessive bleeding.	
	- <1% activity \rightarrow Severe \rightarrow Spontaneous bleeding.	
	- 1-5% \rightarrow moderate \rightarrow generally have bleeding	
	episodes only after mild trauma and typically experience	
	one to several episodes per year.	
	- 5% to 30% \rightarrow mild and usually experience bleeding	
	episodes only after surgery or relatively severe trauma.	

- Hemophilia B (Christmas disease) is also an X-linked recessive disorder and is caused by a deficiency of clotting factor IX.

- Von Willebrand disease autosomal dominant disorder that is highly variable in expression. The von Willebrand factor, encoded by a gene on chromosome 12, serves as a carrier protein for factor VIII. Additionally, it binds to platelets and damaged blood vessel endothelium, facilitating platelet adhesion to injured vessel walls

2. Duchenne Muscular Dystrophy: progressive weakness and loss of muscle.

Genetic Defect	Pathophysiology	Mode of Inheritance
 Mutation in DMD gene encoding dystrophin protein. Mutation Types: Deletions (65% of cases))/duplications (6%-7% of cases) → producing frameshift mutations → no dystrophin. Large gene size (79 exons) → 	- Normally the amino terminus of dystrophin binds to F-actin, an essential cytoskeletal protein, while its carboxyl terminus attaches to a glycoprotein complex called the dystroglycan - sarcoglycan complex . This complex spans the cell membrane and connects to extracellular proteins. By linking these two cellular components, dystrophin plays a critical role in preserving the structural stability of muscle cells .	- X-linked recessive: - Males affected; females usually carriers (8–10% show mild weakness).
high mutation rate.	 Absent dystrophin → muscle membrane instability → progressive muscle cell death. Clinical Effects: Early onset (before age 5). Wheelchair-bound by ~11 years; death by ~25 (cardiorespiratory failure). Pseudohypertrophy (infiltration of the muscle by fat and connective tissue). Cardiomyopathy and respiratory failure. Creatine kinase (CK) is released into the bloodstream. The serum CK levels are at least 	
	20 times higher than the upper limit of the normal range.	

3. Becker Muscular Dystrophy (BMD)

- Genetic Defect: Same gene as DMD, but in-frame mutations (partial dystrophin).
- **Pathophysiology:** Reduced/shortened dystrophin → slower muscle degeneration.
- Inheritance: X-linked recessive (like DMD).
- Clinical Effects: Milder than DMD: Onset ~11 years, slower progression, some retain mobility and Wheelchair-bound after 12 years.

هاد المرض فيه كثير تفاصيل بس حاولت احط اهم النقاط 🛛 (Red-Green Colorblindness) هاد المرض فيه كثير تفاصيل بس حاولت احط اهم النقاط

Genetic Defect	Pathophysiology	Mode of Inheritance
 Mutations in: OPN1LW (long-wavelength/red opsin). OPN1MW (medium- wavelength/green opsin). Both genes are on the X chromosome (distal long arm). Defects usually due to unequal crossover during meiosis, not typical point mutations. 	 The cone cells (red, green, blue) each contain a specific opsin protein. Opsin defects alter how cones respond to light → Loss of red or green cones → inability to distinguish those colors properly. Hybrid opsin genes → cones respond abnormally to wavelengths. 	 X-linked recessive Much more common in males (~8% of European males). Females can be carriers and rarely show mild symptoms. Female carriers have a 50% chance of passing
- Protanopia (loss of red opsin gene). - Deuteranopia (loss of green opsin gene).		the defective gene to sons (who will be affected) and daughters (who may become carriers).
- Protanomaly and deuteranomaly: hybrid genes produce abnormal opsins with shifted sensitivity.		

(وَٱذْكُرُواْٱللَّهَ كَثِيرُالَّعَ لَكُمْ تُفَلِحُونَ)	
استغفرالله	
سبحان الله	
الحمدلله	
الله اکبر	
لاالعالاالله	
سبحان الله وبحمده	
سبحان الله العظيم	
لاحول ولاقوه الابالله	
ઢ حسبیاللہونعمالوکیل	
اللهم صلى وسلمرعلى محمد ﷺ	
لاالهالاانتسبحانك انى كنت من الظالمين	2

Done by: Mays Qashou