Genetics Summary (7-12)

0

By: Shahd Alahmad & ChatGPT

+

Lecture 7 : Autosomal Dominant Inheritance

AUTOSOMAL DOMINANT INHERITANCE

Feature	Description	
Total Known Traits	Over 4,400 traits (most of these diseases are rare ones)	
Frequency (rare)	Most common dominant traits have a gene frequency ~0.001	
Inheritance	One mutant allele is sufficient to cause disease	
Typical Mating Pattern	Affected heterozygote x Unaffected individual	
Transmission Probability	50% chance per child to inherit the disease	
Sex Distribution	Equal in males and females	
Generational Pattern	No skipping , vertical transmission seen مهمة	
Father-Son Transmission	observed (which rules out X-linked inheritance)	
Homozygous Dominant	Very rare, usually more severe disease	

Example: Postaxial Polydactyly

Alleles	Description
Α	Gene for polydactyly (extra digits)
a	Normal allele
Inheritance	Autosomal dominant
Trait Visibility	Seen in both sexes equally
	1

Recurrence Risk (Autosomal Dominant)

Parent Genotype	Recurrence/Occurrence Risk
Heterozygous x Normal	1/2 (50%) per child
Each Birth	Independent event (such as coin toss experiment)

AUTOSOMAL RECESSIVE INHERITANCE

Feature	Description
Prevalence	Rare in populations, requires two carrier parents

<u>Carrier</u> Frequency	Carrier is More common than affected individuals	
Affected Individual's Parents	Usually both are carriers	
Inheritance Pattern	Horizontal (seen in siblings, not always in parents)	
Generational Skipping	Common *imp*	• As
Sex Ratio	Equal in males and females	
Consanguinity	Often seen, especially in rare diseases *imp*	
Example Diseases	Albinism, cystic fibrosis(common in Caucasians),thalassemia , sickle cell anemia(common in black American&africa)	

Punnett Outcomes (Carrier x Carrier)

Outcome	Probability			А	а
Normal Homozygote (AA)	25%				a
Carrier Heterozygote (Aa)	50% (unaffected)	r parent	A	AA	Aa
Affected Homozygote (aa)	25%	Carrier	а	Aa	aa

Mating Type	Outcome
Carrier x Affected	50% affected, 50% carriers (quasi-dominant inheritance)
Affected x Affected	All offspring affected

Comparison Table: Dominant vs Recessive

Attribute	Autosomal Dominant	Autosomal Recessive
Recurrence Risk	50%	25% (carrier x carrier)
Transmission Pattern	Vertical	Horizontal (not seen in earlier generations)
Generational Skipping	No	Yes
Sex Ratio	Equal	Equal
Consanguinity	Rare	Common (esp. in rare diseases)

COMPLICATING FACTORS:

1. New Mutation

- No family history but affected child \rightarrow mutation occurred in a parent's gamete
- Recurrence risk for siblings: general population level (not elevated)
- Offspring of affected child: elevated risk
- Example: Achondroplasia (7/8 due to new mutations)

2. Germline Mosaicism

- Mutation in some germline cells, not somatic
- A parent can have multiple affected children despite appearing unaffected
- Seen in: DMD, Hemophilia A, Neurofibromatosis type I, Osteogenesis imperfecta II

3. Delayed Age of Onset

- Symptoms appear in adulthood (e.g Huntington's disease)
- Reduces natural selection, increases its frequency in population

4. <u>Reduced Penetrance</u>

- Individual has disease-causing genotype but no phenotype
- Still can pass disease to offspring
- Example: Retinoblastoma (90% penetrance).. check the pic \rightarrow

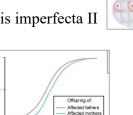
5. <u>Variable Expression</u>

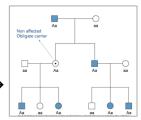
- Severity differs among individuals with the same genotype
- Example: Neurofibromatosis type I
- Causes: environment, modifier genes, mutation type (allelic heterogeneity)

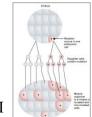
6. Pleiotropy

- One gene affects multiple systems/organs
- Examples: Marfan syndrome(fibrillin mutation), cystic fibrosis, albinism, osteogenesis imperfecta

7. Locus Heterogeneity


- Same disease caused by mutations in different genes/loci
- Examples: APKD (PKD1 on chr 16, PKD2 on chr 4), Osteogenesis imperfecta (collagen chr 7 & 17)


8. Genomic Imprinting


- Phenotype depends on whether mutation is inherited from mother or father (due to differential activation of genes)
- Example: Deletion on chr $15 \rightarrow$ Prader-Willi (paternal) or Angelman syndrome (maternal)

9. Anticipation & Repeat Expansion

• Disease appears earlier and more severe in successive generations

- Caused by repeat expansions (e.g myotonic dystrophy)
- 100 to several thousands repeats = severe form "full blown"

Lecture 8 : Sex-linked and Mitochondrial Inheritance

SEX-LINKED & MITOCHONDRIAL INHERITANCE

Торіс	Details
Inheritance types	Sex-linked recessive and dominant (more applicable to females with 2 X chromosomes)
Severity in males	One X only \rightarrow more severe disease if affected

X vs. Y CHROMOSOMES:

X Chromosome	Y Chromosome
Large (group C)	Small (60 Mb)
~5% of nuclear DNA	Only a few dozen genes
≈1100 genes	Some homologous to X (helps in pairing)
-	Contains SRY, male fertility genes

MITOCHONDRIAL DNA

• More than a dozen diseases are now known to be caused by **mutations in mitochondrial DNA**.

W X-INACTIVATION & LYON HYPOTHESIS

Concept	Details
Dosage imbalance	Female = $2X \rightarrow$ more gene product than males, but this don't really happen! (continue reading to understand)
🔃 Lyon hypothesis	One X is inactivated in each female somatic cell
Equalization	Same protein output in males & females = dosage compensation

SALANCTIVATION MECHANISM

Process	Notes
Early embryogenesis	Random X inactivation (maternal or paternal)
Inactivation inheritance	Descendant cells (in cell division) keep same inactive X

Mosaicism in females	Females = 2 cell types (paternal-X active, maternal-X active)
Males	No mosaicism \rightarrow only one X chromosome (always active)

BARR BODY

What is it?	Notes			
Inactivated X chromosome	Appears as dark staining spot in interphase			
Cell inheritance	Follows parental X inactivation pattern in all daughter cells *it means all its daughter cells will be also same X inactive*			

MANIMAL & HUMAN EXAMPLES

Species	Phenomenon					
Female mice	Heterozygous for X-linked coat color \rightarrow dappled patter					
Calico cats	Orange & black patches (each = active X)					
ocular albinism -Males	No mosaic \rightarrow one color					
Female: ocular albinism	Females show patchy retinal pigmentation					

BIOCHEMICAL & CYTOGENETIC EVIDENCE

- G6PD Enzyme:
 - Encoded on X chromosome
 - Equal expression in males/females due to inactivation
- <u>Heterozygous</u> females: express either A or B G6PD (bc she has different alleles)
- Cytogenetics: Barr body observed since 1940s

MOLECULAR MECHANISM

Point	Details				
Transcription	Only from active X in somatic cells				
X-inactivation center	1-Mb region on long arm of X				
Timing	Starts 7–10 days after fertilization				
In <u>placenta</u>	Only paternal X is inactivated in extra-embryonic tissue				

BARR BODY COUNT

Karyotype	Barr Bodies
XX (normal female)	1
XY (normal male)	0
XO (Turner)	0
XXY (Klinefelter)	1
XXX	2

Note: Extra X chromosomes \neq full inactivation; some genes escape.

ESCAPED INACTIVATION

- Inactivation is <u>incomplete</u>
- Some regions remain active:
 - Short and long arm tips
 - *Short tip: homologous to Y
- ~15% of X-linked genes escape (for keeping equal dosage in males&females)
- Examples:
 - XG blood group gene
 - Kallmann syndrome gene

XIST GENE & EPIGENETIC MODIFICATIONS

Component	Role
XIST gene	Located at X-inactivation center; transcribed from inactive X
XIST RNA	17 kb, coats inactive X, not translated
Epigenetic changes	CG methylation, histone deacetylation

X-LINKED RECESSIVE INHERITANCE:

• Seen in Hemophilia A, Duchenne muscular dystrophy, red-green color blindness

• Females:

- o Homozygous affected
- Heterozygous carriers
- o Homozygous normal
- Males:
 - o normal
 - o Affected if carrying mutation

باختصار احتمالية اصابة الإناث أقل FREQUENCY & GENETIC RATIOS


```
• Females: disease frequency = q<sup>2</sup>
```

Example: Hemophilia A

- Males: 1 in 10,000

- Females: 1 in 100,000,000

M INHERITANCE PATTERNS

Affected Father (X₂Y) + Normal Mother (X₁X₁)

Offspring	Genotype
All daughters	X ₁ X ₂ (carriers)
All sons	X ₁ Y (normal)

	Mother							
		X ₁	X ₁					
Father	X ₂	X ₂ X ₁	X ₂ X ₁	Daughters: 100% carriers				
Fat	Y	X ₁ Y	X ₁ Y	Sons: 100% normal				

Carrier Mother (X1X2) + Normal Father (X1Y) *frequent scenario*			Мо	ther	
Offspring Chance			X ₁	X ₂	
50% sons X ₂ Y (affected)	-	X ₁	X1X1	X ₁ X ₂	Daughters: 50% normal, 50% carriers
50% daughters X ₁ X ₂ (carriers)	Fath	Y	X ₁ Y	X ₂ Y	Sons: 50% normal, 50% affected

Carrier Female (X1X2) + Affected Father (X2Y)

Offspring	Outcome
50% daughters	Affected (X ₂ X ₂)

		Mother				
50% daughters	Carrier (X1X2)			X ₁	X ₂	
50% sons	Affected (X ₂ Y)	Ter	X ₂	X ₂ X ₁	X ₂ X ₂	Daughters: 50% affecte 50% carrier
0% sons	Normal (X ₁ Y)	Fatt	Y	X ₁ Y	X ₂ Y	Sons: 50% norma 50% affecte

Motho

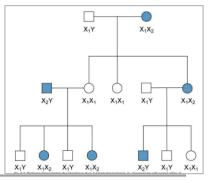
A MANIFESTING HETEROZYGOTES

- Some female carriers may show symptoms
- Due to random X-inactivation (affected X remains active)
- Example: ~5% of female carriers of Hemophilia A show mild symptoms
- Also seen in Turner syndrome females (X0), but less commonly

Lecture 9 : X-Linked Dominant Inheritance

💥 X-Linked Dominant Inheritance

- Fewer in number and prevalence than X-linked recessive
- Hypophosphatemic rickets: kidneys fail to reabsorb phosphate
- Incontinentia pigmenti type 1: skin pigmentation, missing/conical teeth, ocular & neuro abnormalities
- \rightarrow Seen only in females (fatal in males , die after birth)
- → Heterozygous females = milder expression (homozygous is rare & more severe)


Rett Syndrome

- Neurodevelopmental disorder, seen in 1/10,000 to 1/15,000 females
- Mutation in MECP2 gene (binds methylated CG sites near 5' end)
- Protein helps repress transcription of downstream genes
- <u>Mutation \rightarrow loss of repression</u> \rightarrow overexpression or misexpression of brain-related genes

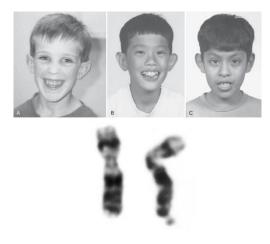
🛷 Pedigree & Transmission

- Pedigree appears similar to autosomal dominant
- A single copy of the mutant X causes disease
- More common in females (2 X chromosomes)

- Affected mothers \rightarrow pass disease to sons and daughters
- Affected fathers \rightarrow pass disease only to daughters
- Father affected \rightarrow 50% chance to have normal male among all kids

Table: X-Linked Dominant vs. X-Linked Recessive

Attribute	X-Linked Dominant	X-Linked Recessive
Heterozygous female × normal male	50% sons affected, 50% daughters affected	50% sons affected, 50% daughters carriers
Affected male × normal female	0% sons affected, 100% daughters affected	0% sons affected, 100% daughters carriers
Transmission pattern	Vertical (seen in every generation)	May skip generations via female carriers
Sex ratio	More females affected (unless lethal in males)	Mostly males; affected females are rare
Male-to-male transmission	Not seen	Not seen
Severity	Less severe in heterozygous females	Carrier females may manifest mild form

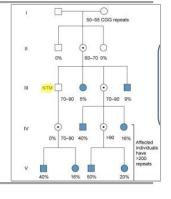

Doctor emphasized this table: very important, memorize differences.

The Fragile X Story

- Most common inherited mental retardation (40% of X-linked cases)
- Not Mendelian inheritance: repeat expansion disorder
- Milder in females, more severe in males (~25% more severe)
- Features: long face, large ears, macroorchidism, hypermobile joints
- Seen in all ethnicities (European, Asian, Latin)

Microscopy

- Fragile site on X becomes visible in folate-deficient media
- Cytogenetic prep: culture lymphocytes, arrest at metaphase
- Fragile X = broken appearance near long arm tip

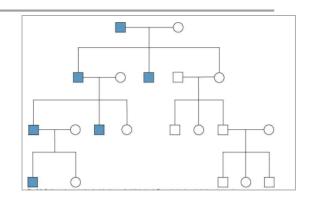


Fragile X Molecular Genetics

<u>Feature</u>	Details
Gene	FMR1 (Located on X chromosome, with CGG repeat in 5' untranslated region)
Normal Range	6–50 CGG repeats
Premutation	~50–230 repeats \rightarrow "normal transmitting males" (unaffected)
Full Mutation	230–1000+ repeats \rightarrow No FMR1 mRNA, severe disorder
Mutation Mechanism	Hypermethylation of CGG island \rightarrow gene silencing
Effect	No production of FMRP protein (needed for neural development)

🛷 Transmission Pattern

- Males with premutation = "normal transmitting males" (unaffected)
- Expansion occurs via **females**, leading to earlier onset (anticipation)
- Degree of methylation correlates with severity of the disorder



FRAXE (Secondary Fragile Site)

Feature	Details
Gene	FMR2
CGG Expansion	Occurs in the 5' region
Effect of Expansion	Hypermethylation leads to mental retardation
Inheritance Pattern	Repeat can expand from both males and females

Y-Linked Inheritance (Holandric)

- Y chromosome = smallest (≈ 60 Mb), few genes
- Contains:
 - SRY gene (sex determination)
 - Azoospermia factors (spermatogenesis)

- HY antigen

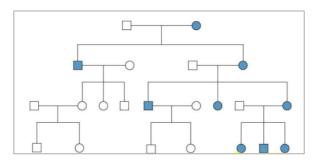
- Housekeeping genes (also present on X, escape inactivation)
- Inheritance is strictly father to son

Sex-Limited vs. Sex-Influenced Traits

Trait Type
Sex-Limited: Expressed in only one sex
E.g. uterine or testicular defects
Sex-Influenced: Present in both sexes, but varies
E.g male-pattern baldness (Autosomal , not X-linked)
- <u>Autosomal</u> dominant in males
- Autosomal recessive in females
- Female heterozygotes = carriers only (unless homozygous)

Mitochondrial Inheritance - Overview


- Mitochondria = oxidative phosphorylation \rightarrow ATP
- Each cell = hundreds of mitochondria
- mtDNA: 16,569 bp, circular, no introns, transcribed in mitochondria
- Encodes: 13 polypeptides + 2 rRNAs + 22 tRNAs
- Most proteins (~90) come from nuclear DNA
- mtDNA inherited **only maternally** (sperm mitochondria don't enter egg)


📔 Mitochondrial Mutations & Heteroplasmy

Mutation Features

• mtDNA has 10× mutation rate (no repair mechanism)

• Oxidative stress adds to mutation load

Mutation Features

- Disease severity = % of mutant mtDNA
- As cells divide, proportions shift due to:
 - Chance
 - Selective replication advantage (e.g. smaller mutated mtDNA replicates faster)

Organs Most Affected + Examples

- Tissues needing more $ATP \rightarrow affected$ more
 - CNS consumes 20% of body ATP
 - mtDNA mutation = CNS often hit first

Mitochondrial Disorders

Disease	Mutation Type	Features
LHON (Leber's Hereditary Optic Neuropathy)	Missense mutation	Vision loss (irreversible, age ~30s)
MERRF (Myoclonic epilepsy with ragged-red fibers)	tRNA mutation (single base mutation)	Epilepsy, ataxia, myopathy, highly variable (bc it's heteroplasmic)
MELAS (Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes)	tRNA mutation (single base mutation)	May cause deafness in 1–2%
Kearns-Sayre	Duplication&Deletions	Muscle weakness, cerebellar damage, heart failure
Pearson Syndrome	Duplication&Deletions	Pancreatic insufficiency, anemia, lactic acidosis
СРЕО	Duplication&Deletions	(Chronic Progressive External Ophthalmoplegia)
Other suspected associations		Diabetes, Alzheimer's, aging

Lecture 10 : X-Linked Dominant Inheritance

🗳 Hemophilia A:

Section	Content
Overview	 X-linked recessive disorder Most common severe bleeding disorder Affects ~1 in 5,000 to 10,000 males
Cause	Deficient/defective Factor VIII

Effect	Impaired fibrin formationProlonged bleedingJoint and muscle hemorrhage
Severity	 <1% = Severe 1-5% = Moderate 5-40% = Mild ≥40% = Functionally normal
Genetics	 Gene on Xq arm 186 kb, 26 exons 9 kb mRNA → 2,332 amino acid protein
Mutations	 45% severe = Inversion 5% = Deletion Nonsense = severe Missense = mild
Treatment History	1960s: Plasma-derived Factor VIIIRisk: HIV, Hep B/C infections
Function of Factor VIII	 Binds Factor IXa → activates Factor X Factor X → converts prothrombin → thrombin Thrombin → converts fibrinogen → fibrin
Interaction with vWF	 In plasma, Factor VIII binds vWF Upon activation: detaches, becomes active two-chain form

🗳 Hemophilia B (Christmas Disease)

Section	Content
Overview	X-linked recessive
	• Less severe & less common than Hemophilia A (1/5th as frequent)
Cause	Deficiency of Factor IX
Gene Info	• 34 kb, 8 exons
	Gene cloned
Treatment	Donor-derived Factor IX
Pedigree	• Queen Victoria = first documented carrier
Example	• Pattern: female carriers \rightarrow affected sons

🗳 Von Willebrand Disease

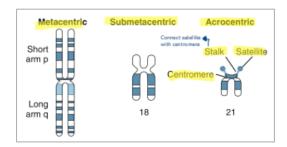
Section

Content

Туре	Autosomal dominantVariable expression
Gene Location	Chromosome 12
Protein Function	Binds & stabilizes Factor VIII
	• Promotes platelet adhesion to damaged vessels
Mutation Impact	Instability of Factor VIII
	• Half-life reduced to 8–12 hours
	• <u>Hemophilia A–like</u> symptoms

Clinical Cytogenetics Overview

Section	Content
Definition	Study of chromosomes at cellular level
Abnormalities	Numerical (e.g triploidy, tetraploidy)Structural: deletion, duplication, inversion, translocation
Impact	 Major cause of pregnancy loss & intellectual disability 50% of 1st trimester miscarriages 20% of 2nd trimester miscarriages


i Cytogenetic Techniques

Step	Γ	Detail
1. Spindle Poisons	Colchicine/colcemid stop cells in metaphaseChromosomes visible & countable	
2. Hypotonic Solution	• Cells swell \rightarrow nucleus rupt	ture \rightarrow clear chromosome spread
3. Staining	Differential banding (dark/light regions)Unique for each chromosome	
4. Karyotyping Process	 Tissue collection (blood) Arrest (colchicine) Fix/drop Photograph/analyze 	 Culture (2–3 days) Hypotonic treatment Stain

Karyotyping

Feature	Details
Manual	Cut/paste printed photos Pair chromosomes by size

Digital	Software arranges based on length/banding Results = Karyotype
Classification	 By size Centromere position: (metacentric, submetacentric, acrocentric) → Banding pattern
Notations	Example: $14q32.3 \rightarrow Chr.14$, long arm, region 3, band 2, sub-band 3

1.1.1

A Banding Techniques

Method	Details
G-Banding	Most common
	• Trypsin + Giemsa stain
	• Dark = AT-rich (additional info)
Q-Banding	• Fluorescent
	Requires UV microscope
R-Banding	Reverse of G-band
	• Dark = GC-rich (additional info)
C-Banding	• Stains centromeric heterochromatin
NOR Staining	• Nuclear organizer region, stains satellites
High-Resolution Banding	• Detects >800 bands
	• Early pro-metaphase chromosomes

🙇 FISH – Fluorescence in Situ Hybridization

Step	Detail
1. Denaturation	Heat \rightarrow ssDNA
2. Probe Hybridization	Complementary probe binds to specific region
3. Visualization	Fluorescence microscope shows binding site
Uses	 Detect deletions (e.g Prader-Willi, Smith-Magenis, Williams) Detect extra copies Detect translocations
Advantages	 Doesn't require cell division High resolution (~1Mb) Used in IVF, prenatal, cancer diagnosis

Step	Detail
1. Label DNA	Test = red, Control = green
2. Hybridize	Mix onto 1.metaphase chromosomes or 2.microarray
3. Analyze	 Yellow = normal Red = duplication Green = deletion
Resolution	 Metaphase CGH: 5–10 Mb Array CGH: 50–100 kb
Limitation	Cannot detect balanced rearrangements (e.g. inversions, translocations), but SKY can do.

Chromosome Number Abnormalities

Туре	Description
Euploidy	Normal multiples of 23 chromosomes (46 chromosmes)
Triploidy	69 chromosomes: caused by <u>dispermy</u> , fusion with polar body, meiotic failure
Tetraploidy	92 chromosomes: caused by mitotic failure or zygote fusion
Effect	 Excess gene dosage → severe CNS/heart malformations Usually lethal, miscarriage or early neonatal death

Lecture 11 : Clinical cytogenetics

Aneuploidy Overview

Concept	Details
Aneuploidy	Abnormal number of individual chromosomes (45, 47)
Monosomy	One copy of a chromosome (e.g. Monosomy X)
Trisomy	Extra copy of a chromosome (e.g. Trisomy 13, 18, 21)
Tolerance	Body tolerates excess material better than deletions مهم
Mechanism	Due to nondisjunction (failure of chromosomes to separate)

Trisomy 21 – Down Syndrome

Section

Points

Basics	• Trisomy 21 (47,XY,+21 or 47,XX,+21)
Dasics	• • • • • • • • • • • • • • • • • • • •
	Named after John Langdon Down (1866)
	Genetic basis discovered 1959
Facial Features	Low regal root Unword clarting role sheel figures
Facial Features	• Low nasal root, Upward slanting palpebral fissures
	Small, overfolded ears, Flat forehead
	• Brachycephaly(short skull)
Other Signs	• Simian crease (50%) • Hypotonia
Epidemiology	• 1:800–1000 live births
1 01	Most common viable aneuploidy
	• Risk \uparrow with maternal age >36 or <20
	$\sim 100 \text{ km}$ with matchial age $\sim 50.01 \times 20$
Medical Complications	1. Duodenal or esophageal atresia
	2. ↑ Leukemia risk (15–20×)
	3. 40% have AV canal heart defect
	• IQ 25–60 (10% of all mental retardation cases)
Survival & Fertility	• ↓ Survival due to heart defects
	Males usually sterile
	• 40% of females fail to ovulate
	• 50% risk of transmitting 2 copies of Chr 21 in eggs
Causes	• 95% nondisjunction (75% in meiosis I)
	• 5% translocation
	• 90–95% maternal in origin
Mosaicism	• 2–4% of cases
	• Example: 47,XY,+21[10]/46,XY[10]
Dx	Analyze 20 metaphase cells (to check Mosaicism)
	• Use FISH

Trisomy 18 – Edwards Syndrome

Section	Points
Karyotype	• Trisomy 18 (47,XY,+18)
Prevalence	 1 in 6,000 live births Most common chromosomal abnormality in <u>stillbirths</u>
Features	 Small ears Short sternum Short big toes Facial abnormalities Heart defects Reduced birth weight
Mortality	 50% die within weeks Marked disabilities; most cannot walk
Cause	 >95% = full trisomy 90% = maternal nondisjunction

🗳 Trisomy 13 – Patau Syndrome

Section	Points
Karyotype	• Trisomy 13 (47,XY,+13)
Incidence	• 1 in 10,000
Features	Cleft lip/palateSmall eyesBroad nosePolydactyly
Prognosis	95% die within 1 yearDelayed development, some communication ability
Cause	 80% full trisomy Many due to translocation Risk ↑ with maternal age 95% spontaneously lost during pregnancy

Trisomies, Nondisjunction & Maternal Age

Торіс	Details
Risk by Age	• $<30y = <1/1000$ • $35y = 1/400$ • $40y = 1/100$ • $45y = 1/25$
Patterns	• Other trisomies ↑ with age
	• Older women <u>less</u> likely to abort trisomic fetus
Oocyte Age	Oocyte is same age as motherRisk accumulates with aging eggs
Key Note	 ³/₄ of Down syndrome births = mothers <35y Bc most births are in this age group
Paternal Age	• Minimal effect (sperm renewed constantly)

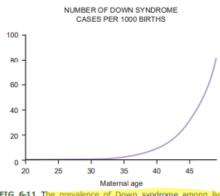


FIG 6-11 The prevalence of Down syndrome among live births in relation to age of the mother. The prevalence increases with maternal age and becomes especially notable after the age of 35 years. (Data from Hook EB, Chambers

🗳 Monosomy X – Turner Syndrome

Karyotype	(45,X) or (45,XO)
Features	 Short stature Ovarian dysgenesis (most are infertile) Triangle face, webbed neck, shield chest Heart & kidney defects Normal intelligence
Growth	 ↓ Height by 20 cm No adolescent growth spurt
Fertility	 Streak ovaries Infertile Require estrogen for secondary sex traits & bone health

Karyotype Stats	 • 50% = 45,X • 30-40% = mosaic (<u>45,X/46,XX</u> or 45,X/46,XY أقل شيو عًا 10-20% = structural abnormalities in X chromosome
Origin	 60–80% missing <u>paternal</u> X >99% of 45,X pregnancies lost pre-natally

🗳 XX Male Syndrome

Section	Points
Karyotype	46,XX (phenotypically male)
Cause	• Translocation of SRY gene from Y to X during paternal meiosis
Features	 Normal male appearance Gynecomastia Normal testosterone levels Absence of Müllerian structures
Note	• Not inherited (de novo event)

õ

đ

Karyotype	46,XY (phenotypically female)	
Cause	• Deletion/mutation of SRY gene or genes downstream	
Features	 Female phenotype No secondary sexual characteristics Streak gonads Risk of gonadoblastoma 	
Note	Often de novo mutationCan be X-linked recessive if downstream of SRY	

Klinefelter Syndrome (47,XXY)

Prevalence	1/500 – 1/1,000 males
Features	 Tall, long limbs Sterile (small testes) Gynecomastia (¹/₃)
	• ↓ Body hair, ↓ muscle mass
	• Slight \downarrow IQ (10–15 points)
Inheritance	• 50% maternal origin
	• Risk ↑ with maternal age
	• 50% of conceptions spontaneously aborted
	• Viable sperm in mosaicism (15%)
Variants	• 48,XXXY / 49,XXXXY = More severe defects

Trisomy X (47,XXX)

Prevalence	1/1,000 females
Features	Mostly benignSometimes: sterility, menstrual irregularity, mild MRFertility usually normal
Mechanism	 Due to maternal nondisjunction (90%) Extra Xs → ↑ MR & physical defects

اللهم يا مهيء الظروف، خالق الأسباب، لك أمورنا كلها، فمكّنا مما نريد، وما نَحلم، وما نطمح، اللهم اكفنا شرّ الدنيا، شرّ الفقد، شرّ الفاجعة، شرّ أنفسنا، اللهم جمّل حالنا واجعله حالاً يرضيك ثم يرضينا، ربي أنت الميسّر وأنت المُسهّل سهّل أمرنا وحقق مطالبنا يارب يا كريم.

🗳 47,XYY Syndrome

Karyotype	47 , XYY
Features	Tall stature
	• ↓ IQ (10–15 points)
	• \uparrow incidence in prison population (1/30)
	• Behavioral: ADHD, learning issues

Lecture 12 | Last Lec :) - Clinical cytogenetics:

Chromosome Structure Abnormalities

Туре	Details	
Unbalanced	 Deletion or duplication Net gain/loss of genetic material Usually results in severe genetic diseases 	
Balanced	Exchange between two chromosomesNo net gain/lossCarriers are usually unaffected	
Causes	Misalignment during meiosisChromosome breakage during mitosis/meiosis	
Clastogens	• Ionizing radiation • Viral infections • Chemicals	
Types	Deletion • Duplication Inversion • Translocation	

G Translocations

Concept Points

Definition	• Exchange of material between nonhomologous chromosomes	
Prevalence	Balanced: 1/500 to 1/1000 individuals	
Types	Reciprocal Robertsonian	

Reciprocal Translocations

Concept	Details	Normal 3	ł	and a second	der(3)
Mechanism	 Two chromosome breaks → mutual exchange Resulting in derivative chromosomes 			E .	der(6)
Phenotype	Carriers are usually unaffected	Normal 3	1 1	Might (der(3)
Offspring Outcomes	 Normal karyotype Balanced translocation carrier Unbalanced translocation → duplication/deletion → clinical effects 	Normal 6			Norma

Robertsonian Translocations *more common than Reciprocal*

Concept	Details	Conversion and the part of the starting
Mechanism	 Fusion of long arms of acrocentric chromosomes (13, 14, 15, 21, 22) Short arms lost (non-essential) 	
Phenotype	 • 45 chromosomes • Complete genetic material → phenotypically normal 	
Example	• t(14;21)(q10;q10) Robertsonian Down syndrome	
Outcomes check the pic	 Alternate segregation → normal or balanced carrier Adjacent segregation → trisomy/monosomy (e.g translocation Down syndrome) 	

Ø Deletions

Types	Details
Terminal	 Single break at chromosome end → Loss of distal part
Interstitial	 Two breaks within chromosome → Internal loss (interstitial)
Mechanism	Smaller fragment lostVisible under microscope
Clinical Impact	• Severe outcomes

This is a female patient diagnosed with Wolf-Hirschhorn syndrome, which is caused by a deletion on the short arm (p arm) of chromosome 4. Clinically, she presents with widely spaced eyes (hypertelorism) and abnormalities of the upper lip, (cleft lip).

-

.

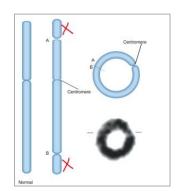
*

Microdeletion Syndromes :

if Microdeletions are caused by the presence of multiple repeated sequences, termed low-copy repeats (LCRs), at the deletion boundaries. These repeated sequences, even though present in low numbers, increase susceptibility to microdeletions.

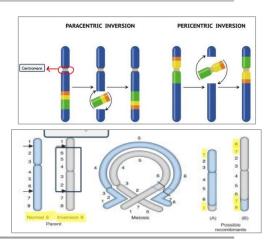
These sequences promote unequal crossing over, which:

- Produces duplications and
- Deletions of the region bounded by the repeat elements.
- ♂ Williams syndrome is given as an example of this mechanism.


Syndrome	Deletion Region	Features
Cri-du-chat	5p deletion	Loss of part of short arm of chromosome 5 chromosome 5 (5p-) • Cat-like cry in infants • Microcephaly , mental retardaiton
Wolf– Hirschhorn	Deletion on short arm of chromosome 4 (4p-)	
Prader–Willi	15q11-13 (paternal)	Obesity, short stature, hypotonia, small feet, intellectual disability
Angelman	15q11-13 (maternal)	Intellectual disability, ataxia, seizures, laughter
Langer-Giedion	8q24	Sparse hair, exostoses
Miller-Dieker	17p13.3	Lissencephaly, cognitive disability
VCF/DiGeorge	22q11	Cleft palate, heart defects, thymus hypoplasia
Smith–Magenis	17p11.2	Self-injury, dysmorphic features
Williams	7q11	Aortic stenosis, development disability

Duplications

Concept	Details
Definition	Partial trisomy: duplicated region
Causes	Unequal crossoverReciprocal Translocation parents' offspring
Example	Charcot-Marie-Tooth: duplication in PMP22 gene
Clinical Impact	• Usually milder than deletions


i Ring Chromosomes

Mechanism	Details
Formation	• Terminal deletions (both tips) \rightarrow sticky ends fuse
Example	• 46,X,r(X) female

Inversions

Туре	Details	
Pericentric	• Includes centromere • Breaks on both arms	
Paracentric	Only one arm involved	
Mechanism	Segment flips and reinserts	
Outcome	 Carriers = normal Offspring may have duplication/deletion due to mispairing loop 	

🗳 Isochromosomes

Concept	Details
Mechanism	 Abnormal perpendicular division → 2 p-arms or 2 q-arms
Effects	 Most autosomes are lethal Xq iso = Turner syndrome features i(18q) = Edwards syndrome
Cancer Link	• Isochromosomes common in cancer

Concept	Details	
Cause	• Somatic chromosomal rearrangements (not inherited)	
Examples	 CML: t(9;22) → BCR-ABL (Philadelphia chromosome) Burkitt lymphoma: t(8;14) → MYC activation 	
Methods	Spectral karyotyping FISH Chromosome analysis	
Clinical Relevance	• Helps in dx , therapy choice, prognosis	

Cancer-Linked Rearrangements

Cancer	Cytogenetic Change
CML	t(9;22)(q34;q11) Philadelphia
AML	<u>t(8;21)(</u> q22;q22)
Acute promyelocytic leukemia	<u>t(15;17)(</u> q22;q11–12)

ALL	<u>t(12;21)</u> (p13;q22)
Burkitt lymphoma	t(8;14)(q24;q32) - MYC oncogene
Neuroblastoma	N-MYC amplification
Breast cancer	HER2/NEU amplification

Chromosome Instability Syndromes

Syndrome	Details
Fanconi anemia	• High breakage with alkylating agents
Bloom syndrome	• ↑ Sister chromatid exchange
Ataxia telangiectasia	Breakage under lab conditions
Xeroderma pigmentosum	• UV sensitivity
Shared Feature	• All are autosomal recessive
	High cancer risk Eaulty DNA repair/replication
	• Faulty DNA repair/replication

