

UGS Physiology Summary

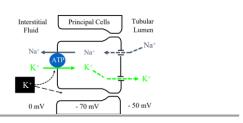
By: Shahd Alahmad

Homeostasis of Electrolytes:

Normal potassium distribution

Compartment	Amount	Conc.
Intracellular	3920 mEq / 28L	140 mEq/L
Extracellular	59 mEq / 14L	4.2 mEq/L
Daily intake	~100 mEq/day	Must = output

Defenses against K⁺ imbalance


Line	Mechanism
First	Intracellular \leftrightarrow extracellular shift
Second	Urinary excretion (hormonal regulation)

𝔅 K⁺ imbalance effects

Condition	Consequences	
Hyperkalemia	- Partial Cell depolarization - Cardiac toxicity (VF, asystole)	
Hypokalemia	 Hyperpolarization - Weakness, fatigue Hypoventilation - Delayed ventricular repolarization 	

Cellular K⁺ uptake – regulators

Factor	Mechanism	
Insulin	Stimulates Na ⁺ /K ⁺ ATPase $\rightarrow \uparrow K^+$ uptake post-meal	
Aldosterone	\uparrow Na ⁺ reabsorption, \uparrow K ⁺ secretion	
β-adrenergic	Stimulates Na^+/K^+ ATPase = stimulus for k+ uptake	

K⁺ release from cells

Factor	Effect	K ⁺ intake 100 mEq/d
Cell lysis	Tissue injury or hypotonic ECF \rightarrow K ⁺ shift to ECF	Extracell. K* Intracell. K*
Hypertonic ECF	Water exits cells $\rightarrow \uparrow$ intracellular $K^+ \rightarrow K^+$ efflux	Insulin \leftarrow Cell lysis Aldosterone \leftarrow (hyper ex F) β -adrenergic \leftarrow strenuous exercise
Strenuous exercise	$\uparrow K^+$ efflux; worsened by dehydration or β -blockers	Alkalosis — β-blockade - Acidosis 59 mmol 3920 mmol
↓ Na ⁺ /K ⁺ ATPase	Seen in acidosis $\rightarrow K^+$ accumulation in ECF	(<2%) (>98%) K ⁺ output Total = 100 mEa/d

Question

 A 26-year-old woman recently adopted a healthier diet to eat more fruits and vegetables. As a result, her potassium intake increased from 80 to 160 mmol/day. Which of the following conditions would you expect to find 2 weeks after she increased her potassium intake, compared with before the increase?

	Potassium Excretion Rate	Sodium Excretion Rate	Plasma Aldosterone Concen- tration	Plasma Potassium Concentration
A)	↔	↔	1	Large increase (>1 mmol/l)
B)	**	Ţ	†	Small increase (<1 mmol/l)
C)	↑2×		1	Small increase (<1 mmol/l)
D)	↑ 2×	†	1	Large increase (>1 mmol/l)
E)	↑ 2×	Ť	↔	Large increase (>1 mmol/l)

i Renal regulation summary

Step	Notes	(10) (10) (10) (10) (10) (10) (10) (10)
Filtration	Depends on $GFR \times plasma[K^+]$ (So the filtration aids in the regulation process but it's not enough.)	newigin was
Reabsorption	- PCT: ~67% - Thick limb: ~25% - Both are Not regulated, we can't control	3
Secretion	- Late DCT & collecting duct - Aldosterone-dependent - Main regulation point	

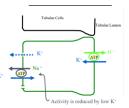
Principal cells (K⁺ secretion)

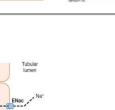
Channel	Location	Fx.	Renal interstitial fluid	Principal cells	Tubular lumen
Na ⁺ /K ⁺ ATPase	Basolateral	Creates Na ⁺ gradient, pumps K ⁺ into cell		Na⁺ ≪ 6	ENac Na ⁺
ENaC	Apical	Reabsorbs Na ⁺	K+	K.	ENac
ROMK & BK	Apical	Secrete K ⁺		70 mV	BK ROMK

Intercalated cells (K⁺ reabsorption)

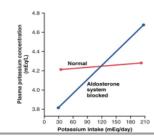
Pump	Condition
K ⁺ /H ⁺ ATPase	Active in hypokalemia Reabsorbs K ⁺ , secretes H ⁺

Factors influencing K⁺ secretion


Factor	Effect on K ⁺ secretion
↑ ECF [K ⁺]	↑ (directly & via aldosterone)
↑ Aldosterone	↑ via ENaC, Na ⁺ /K ⁺ ATPase, ROMK, BK
\uparrow Na ⁺ delivery / flow	↑ via dilution effect
Alkalosis	\uparrow via \uparrow Na ⁺ /K ⁺ ATPase activity
Acidosis	$\downarrow Na^{+}/K^{+} \text{ ATPase} \rightarrow \downarrow \text{ secretion}$


Aldosterone effects

Trigger	Outcome
↑ Plasma K ⁺	↑ Aldosterone release
Aldosterone	\uparrow Na ⁺ /K ⁺ ATPase, ENaC, K ⁺ channels \uparrow Na ⁺ reabsorption, \uparrow K ⁺ excretion


Aldosterone feedback loop

Step Description

1	↑ Plasma $K^+ \rightarrow \uparrow$ Aldosterone
2	$\uparrow K^+$ secretion $\rightarrow \downarrow$ Plasma K^+
3	↓ Aldosterone release (negative feedback)
Block	\rightarrow Dangerous K ⁺ swings (e.g. Addison's disease)

C Tubular flow effect

Flow	Impact on K^+ $- \downarrow K^+$ in lumen - \uparrow Secretion gradient - $\uparrow K^+$ excretion	
High		
Clinical	Diuretics $\rightarrow \uparrow$ flow $\rightarrow \uparrow K^+$ loss	

Bodium effect on K⁺ *imp*

Na⁺ intake	Outcome on K ⁺ excretion	
↑ Intake	$-\uparrow$ Flow $\rightarrow \uparrow$ K ⁺ secretion	
	$-\downarrow RAAS \rightarrow \downarrow aldosterone$	
	Net: As a result of these two opposing influences potassium excretion	
	remains relatively unchanged. مهم	

Clinical note: diuretics

Туре	Action
PCT/loop	\downarrow Na ⁺ reabsorption $\rightarrow \uparrow$ flow rate
DCT	\downarrow time for K ⁺ reabsorption
Result	\uparrow K ⁺ loss due to enhanced secretion + limited reabsorption

Acidosis vs alkalosis

State	Effect on K ⁺
Acidosis	Inhibits Na ⁺ /K ⁺ ATPase \downarrow secretion, \uparrow ECF K ⁺
Alkalosis	Stimulates pump \uparrow K ⁺ secretion & excretion

Which of the following would cause the most serious hypokalemia?
A) A decrease in potassium intake from 150 mEq/day to 60 mEq/day
B) An increase in sodium intake from 100 to 200 mEq/day
C) Excessive aldosterone secretion plus high sodium intake
D) Excessive aldosterone secretion plus low sodium intake

K+ Reabsorpt

Diuretics that Prox. Loop Na * Reabsornt

> ll : Lumen Gradier for K⁺ Diffusion ↓ K⁺ Secretion

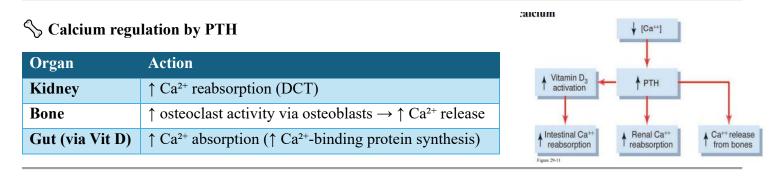
Water Reabsorption

Cell : Lun

- E) A patient with Addison's disease
- F) Treatment with a beta-adrenergic blocker

G) Treatment with spironolactone

🐢 Sodium & potassium homeostasis under varied intake

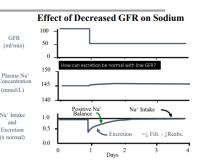

Condition	Na ⁺ effect	K ⁺ excretion impact
High Na⁺ intake	↑ GFR, \downarrow proximal Na ⁺ reabsorption \rightarrow ↑ distal flow	 ↑ K⁺ secretion due to flow ↓ aldosterone → ↓ K⁺ secretion Net: no significant K⁺ excretion change
Low Na⁺ intake	\downarrow GFR, \uparrow proximal Na ⁺ reabsorption $\rightarrow \downarrow$ distal flow	 ↑ aldosterone → ↑ K⁺ secretion ↓ flow → ↓ K⁺ secretion Net: no significant K⁺ excretion change

Condition	Impact
Acute acidosis	\downarrow Na ⁺ /K ⁺ ATPase activity + \downarrow membrane K ⁺ permeability $\rightarrow \downarrow$ K ⁺ secretion
Chronic acidosis	$\downarrow Na^{+} reabsorption \rightarrow \uparrow tubular flow \rightarrow \uparrow K^{+} secretion$
Alkalosis	$\uparrow \operatorname{Na^{+}/K^{+} ATPase} \rightarrow \uparrow \text{ intracellular } K^{+} \rightarrow \uparrow K^{+} \text{ secretion/excretion} \rightarrow \text{ hypokalemia risk}$

ا المهم جدا Clinical causes of potassium disturbances مهم جدا

Hyperkalemia	Hypokalemia
- Renal failure	- Very low K ⁺ intake
-↓ distal nephron flow (e.g. heart failure, NSAIDs)	- GI loss (diarrhea)
- <u>↓ aldosterone</u> /effect (Addison's, K ⁺ -sparing diuretics)	- <u>Alkalosis مهم</u>
- Acidosis (mild hyperkalemia)	- Excess <u>insulin</u>
- Diabetes	- ↑ distal flow (diuretics, nephropathies)
	- ↑ aldosterone/mineralocorticoids

Calcium reabsorption in nephron


Segment	Mechanism	(ATP) Ca**
РСТ	~80% via paracellular route with water	<u> </u>
РСТ	20% via Ca ²⁺ channels \rightarrow Ca ²⁺ -ATPase + Na ⁺ /Ca ²⁺ exchanger	3 Nat
(transcellular)		
Thick ascending limb	Paracellular *also there's reabsorption in DCT*	
		Figure 29-12

Renal integration: fluid & electrolyte regulation

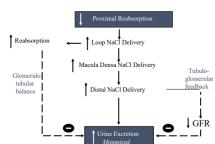
Formula	Notes
Excretion = Filtration - Reabsorption + Secretion	Applies to Na ⁺ , K ⁺ , Ca ²⁺
Steady-state	Intake = Output

Solute	Result
Na ⁺	\downarrow excretion initially Tubular reabsorption $\downarrow \rightarrow$ restores balance

Tubula

Proximal tubular ce

Compensatory mechanisms


Response type	Includes
Local renal	GFR, tubular reabsorption/secretion changes
Systemic	Hormones, BP, sympathetic tone, blood composition

Na⁺ balance with altered reabsorption

Case	Response
↓ reabsorption	Initially \uparrow Na ⁺ excretion \rightarrow autoreg \downarrow GFR \rightarrow Na ⁺ balance restored

📈 High Na⁺ intake: integrated renal response

Effect	Mechanism	
Slight ↑ GFR	↑ filtration	
\downarrow Na ⁺ reabsorption	Na⁺ reabsorption $-\downarrow$ RAAS - \uparrow peritubular pressure - \uparrow natriuretic peptic	
Net result \uparrow Na ⁺ excretion \rightarrow maintains homeostasis		

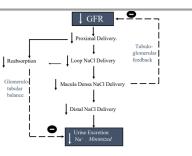
2

Excretion = |Filt, - |Reab

- Na† Intake

3

Acid-Base Regulation in the Kidney:


🐢 Acid-base balance

System	Function
Respiratory + Renal	Work in harmony to maintain acid-base balance
Buffer systems	Act immediately to resist changes in pH

- Body pH must be between 7.2–7.4 for enzyme function
- H+ is regulated at $3-5 \times 10^{-8} \text{ mol/L}$
- Metabolism produces acids:
 - Volatile: removed via CO2
 - o Non-volatile: organic, titrated then excreted

V Systems regulating H⁺ in body fluids

Line System

Effect of Decreased Reabsorption on Sodium

Balance on the proximal tubules

Negative

1 Days

100

50

0 150

145

140

2.5

1.5

0.5

0

Reabsorption

Plasma Na+

(mmol/L)

Na⁺ Intake and

Excretion

(x normal)

(ml/min)

1st	Chemical buffers	Bicarbonate, ammonia, proteins, phosphate (fast but temporary)
2nd	Lungs	Eliminate volatile acids via CO2 (rapid, incomplete)
3rd	Kidneys	Eliminate non-volatile acids by: - H ⁺ secretion - HCO ₃ ⁻ reabsorption - New HCO ₃ ⁻ generation

i Buffer systems in body (60-70% of buffering is in the cells)

Buffer	Location	Rx.
Bicarbonate	ECF	$H_2O + CO_2 \leftrightarrows H_2CO_3 \leftrightarrows H^+ + HCO_3^-$
Phosphate	Renal tubules	$HPO_{4^{2-}} + H^{+} \leftrightarrows H_{2}PO_{4^{-}}$
Ammonia	Renal tubules	$NH_3 + H^+ \leftrightarrows NH_{4^+}$
Proteins	Intracellular (e.g Hb)	$H^+ + Hb \leftrightarrows HHb$

Buffer effectiveness depends on:

- Buffer concentration
- Proximity of pKa to pH

Henderson-Hasselbalch equation

Term	Definition
рН	Depends on ratio of HCO ₃ ⁻ to CO ₂
рКа	Bicarbonate buffer ≈ 6.1
When $[HCO_3^-] = [CO_2]$	pH = pKa

• Normal point for bicarbonate buffer = pH 7.4 (not optimal, but highly regulated)

Non-volatile acid burden

		7
Metric	Value	
Novemal [II]+1	0.00004	
Normal [H ⁺]	0.00004 mmol/L	
Acid produced	60–80 mmol/day	
Need for buffering	Duffer 47 500 normal Ut concentration	
Need for buffering	Buffer 47,500x normal H ⁺ concentration	
Viable pH limits	6.8-8	

mmol/L 0.00004 = تركيزه الطبيعي في الدم + H

الجسم ينتج يوميًّا 60–mmol 80 من الأحماض غير المتطايرة.

****** Respiratory compensation

Condition	Response	
Acidosis	$\uparrow \text{Ventilation} \rightarrow \downarrow \text{CO}_2 \rightarrow \downarrow \text{H}^+$	
Alkalosis	$\downarrow \text{Ventilation} \rightarrow \uparrow \text{CO}_2 \rightarrow \uparrow \text{H}^+$	
Feedback gain	$1.0-3.0 \rightarrow 50-75\%$ correction only	

🔗 Renal compensation

Mechanism	Notes
H ⁺ secretion	Mainly by intercalated cells
HCO ₃ ⁻ reabsorption	1:1 with H ⁺ secretion
New HCO ₃ ⁻ generation	When H ⁺ exceeds titration capacity

Reabsorption & H⁺ secretion (nephron segments)

Segment	Action
РСТ	Reabsorbs 70–80% of HCO ₃ ⁻
Thin Henle	No HCO ₃ ⁻ change
Thick Henle	Reabsorbs 10%
Distal/Collecting tubules	Fine-tune HCO ₃ ⁻ reabsorption
Varu	

Key:

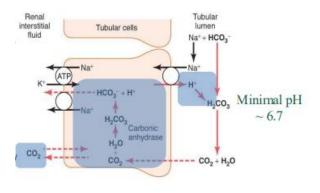
- Total filtered HCO₃⁻: ~4320 mmol/day
- ~1 mmol/day HCO₃⁻ excreted; 4319 mmol H⁺ secreted

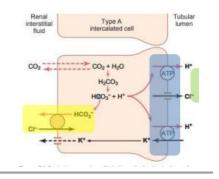
Proximal tubule & thick loop transport

Side	Transporters
Basolateral	Na ⁺ /K ⁺ ATPase, HCO ₃ ⁻ /Na ⁺ cotransport
Apical	Na ⁺ /H ⁺ exchanger

- Carbonic anhydrase drives cycle:
 - $\circ H^{+} + HCO_{3}^{-} \rightarrow H_{2}CO_{3} \rightarrow CO_{2} + H_{2}O \rightarrow diffuses into cell$ $\rightarrow reforms HCO_{3}^{-} + H^{+}$
 - Repeat cycle
- Result: H⁺ secreted, HCO₃⁻ reabsorbed

	Туре	Transporters	
	Type A	Apical: H ⁺ ATPase, H ⁺ /K ⁺ antiport Basolateral: HCO ₃ ⁻ /Cl ⁻ exchanger	
• H ⁺ secreted, HCO ₃ ⁻ reabsorbed			


• Minimal urine pH = 4.5


Regulation of renal H⁺ secretion

Stimulus	Effect
↑ Plasma CO2	\uparrow H ⁺ secretion (respiratory acidosis)
↑ Extracellular H ⁺	\uparrow H ⁺ secretion (acidosis)
↑ Tubular buffer	\uparrow H ⁺ secretion (adaptive response)

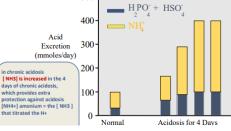
<u>Kidneys eliminate non-volatile</u> <u>acids (H₂SO₄, H₃PO₄) (~ 80 mmol/day)</u>

- Filtration of HCO₃- (~ 4320 mmol/day)
- Secretion of H⁺ (~ 4400 mmol/day)
- <u>Reabsorption of HCO₃-(~4319 mmol/day)</u>
- Production of new HCO₃ (~ 80 mmol/day)
- Excretion of HCO₃-(1 mmol/day)

Generating new bicarbonate

Context	Mechanism
All HCO3 ⁻ reabsorbed	Excess H ⁺ remains
Buffering w/ phosphate or ammonia	Generates new HCO ₃ ⁻
End result	Increases systemic HCO3 ⁻ even without reabsorbing it directly

Phosphate buffer role


Process	Notes
In lumen	$NaHPO_{4^{2-}} + H^+ \leftrightarrows NaH_2PO_4$
Result	Each titrated $H^+ \rightarrow \text{new HCO}_3^-$ formed
Buffering capacity	~30 mmol/day
Chronic acidosis	Not regulated \rightarrow less useful * not the major tubular buffer in chronic acidosis*

Ammonia buffer role

Source	Action		
Proximal tubule	$Glutamine \rightarrow NH_{4^+} + HCO_{3^-}$		
Collecting duct	$\rm NH_3 \ binds \ H^+ \rightarrow NH_{4^+} \ (excreted)$		
Result	$\rm NH_{4^+} excretion \rightarrow new \ HCO_{3^-}$		
Chronic acidosis	Ammonia increases; phosphate does not		

500 $HPO^{-} + HSO^{-}$

Phosphate and Ammonium Buffering In Chronic Acidosis

.

Quantification summary

Value	Description	
Total H ⁺ secretion	4380 mmol/day (4320 HCO ₃ ⁻ + 60 non-volatile)	
Titratable acid	30 mmol/day (phosphate)	
NH ₄ ⁺ excretion	30 mmol/day	
HCO₃ [−] excreted	1 mmol/day	
Net H ⁺ excretion	59 mmol/day	

شو معناها؟ Value Total H* secretion = 4380 mmol/day كمية H* اللي الكلية بتطرده يومهًا HCO3" + 60 non-volatile 4320 = يعنى 4320 منها عشان ترجع ببكربونات، و60 لمعادلة أحماض غبر طبارة H⁺ ظُرد مع الفوسفات (₄PO+) Titratable acid = 30 mmol/day NH4* excretion = 30 mmol/day H* ظُرد عن طريق تكوين الأمونيوم (NH₄) يعني تقريبًا ما ضيَّعنا بيكربونات – ممتاز HCO3⁻ excreted = 1 mmol/day الكمية الصافية اللي الجسم فعليًا تخلَّص منها من H+ (يعني 30 Net H* excretion = 59 mmol/da (1 - 30 +

> 🔘 إيش يعني "Net H⁺ excretion = 59? ىعناھا: الجسم تخلّص من mmol 59 من الـ H* باليوم.

وهاي الكمية هي الفرق بين اللي طردناه كـ أحماض (phosphate + ammonium) س أي **خسارة** في البيكربونات (لأن فقدها = كأنك زدت حموضة). ناقص

Process	Description
H⁺ + NH₃ / NaHPO₄⁻	 Forms NH4⁺ or H2PO4⁻ Excretes H⁺ safely Adds new HCO3⁻ to blood

✓ NH₄⁺ & HCO₃⁻ production sites

Segment	Action	
Proximal tubule	 Glutamine → NH4⁺ + HCO3⁻ NH4⁺ secreted via Na⁺ exchange HCO3⁻ reabsorbed with Na⁺ NH4⁺ can → NH3 + H⁺ 	Renal Interstitial fluid Collecting cells Tubular Tubular fluid Henal tubular fluid Proximal tubular fluid Tubular fluid
Thick limb & distal tubule	Continue HCO₃ [−] generation via NH₄ ⁺	Na* NH3 NH3 Giutamine Giutamine Giutamine
Collecting tubule	 - NH₃ from capillaries/cells binds H⁺ - Forms NH₄⁺ → excreted - Prevents HCO₃⁻ loss → net new HCO₃⁻ 	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $

II Renal acid-base regulation values

Parameter	Normal Value			
		القيمة (تقريبية)	شو معناته؟	Parameter
Total H ⁺ secretion / HCO ₃ ⁻ reabsorption	~4320 mmol/day	mmol/day 4320 ≈	كمية H" اللي الكلى تتعامل معه يوميًا (إما تطلع H" أو تعيد امتصاص «HCO)	Total H ⁺ secretion / HCO₃ reabsorption
Nonvolatile acid excretion	~60 mmol/day	mmol/day 60 ≈	كمية الأحماض غير الطيّارة اللي الجسم لازم يتخلص منها عن طريق الكلي (مش عبر الرئتين)	Nonvolatile acid excretio
Titratable acid + NH ₄ ⁺ excretion	~60 mmol/day	mmol/day 60 ≈	مجموع الطرق اللي الكلية تطرد فيها H* فعليًا (لاtiratable acids + ammonium)	TA + NH_4^+ excretion
Net H^+ excretion = new HCO ₃ ⁻	~59 mmol/day	mmol/day 59 ≈	الفرق الصافي = كمية H" اللي خرجت فعلًا وخلّت الجسم يكسب بيكربونات جديدة	Net H [*] excretion = new ⁻ HCO ₃

Compensation changes

Condition	Titratable acid	\mathbf{NH}_{4^+}	HCO₃ ⁻ excretion	Total
Acidosis	35	165	0	200
Alkalosis	0	0	80	80

Interview of the second s

Equation	Meaning
Net H^+ excretion = TA + NH_{4^+} - HCO_{3^-} loss	H ⁺ buffered = new HCO ₃ ⁻
Addition of $HCO_3^- = TA + NH_4^+ - HCO_3^-$ excretion	Same as above

Compensation directions

Disorder	Compensation
Respiratory acidosis	↑ Renal HCO ₃ ⁻ reabsorption, H ⁺ excretion
Respiratory alkalosis	↓ H ⁺ secretion, ↑ HCO ₃ ⁻ loss

Metabolic acidosis	Hyperventilation $\rightarrow \downarrow PCO_2 + renal buffer excretion$
Metabolic alkalosis	↓ HCO3 ⁻ reabsorption + ↑ excretion

A Buffer roles summary

Buffer	Effect	The following data were taken from a patient: urine volume = 1.0 liter/day urine HCO_3^- concentration = 2 mmol/liter
HCO3 ⁻	Reabsorbed and used in initial buffering	urine NH_4^+ concentration = 15 mmol/liter urine titratable acid = 10 mmol/liter
NH ₃ /NH ₄ ⁺	Buffers H^+ without using $HCO_3^- \rightarrow new HCO_3^-$ added	net acid excretion = Titr. Acid + NH_4^+ excret - HCO ₃ = $(10 \times 1) + (15 \times 1) - (1 \times 2)$
NaHPO₄⁻	Titrates $H^{\scriptscriptstyle +} \rightarrow$ forms titratable acid	= 23 mmol/day
		net rate of HCO_2^- addition to body = 23 mmol/day

🗞 Renal responses by disorder

Condition	Renal reaction
Respiratory acidosis	- \uparrow PCO ₂ \rightarrow \uparrow tubular H ⁺ - \uparrow HCO ₃ ⁻ reabsorption - Net new HCO ₃ ⁻ made
Metabolic acidosis	 ↓ HCO₃⁻ → ↓ filtered load - Full HCO₃⁻ reabsorbed H⁺ buffered by NH₄⁺, NaHPO₄⁻ - Net HCO₃⁻ added
Respiratory alkalosis	- ↓ PCO ₂ → ↓ H ⁺ secretion Excess filtered HCO ₃ ⁻ not reabsorbed - \uparrow HCO ₃ ⁻ excretion → ↓ pH
Metabolic alkalosis	- \uparrow HCO ₃ ⁻ filtered $\rightarrow \downarrow$ reabsorption - \uparrow Excretion of HCO ₃ ⁻ - \downarrow H ⁺ secretion due to less titration

Acid-base disorder classification

Condition	pН	HCO3 ⁻	PCO ₂	Primary Issue	Compensation
Metabolic acidosis	Ļ	Ļ	↓ (comp)	↓ HCO₃ ⁻	<pre>↑ ventilation ↑ renal HCO₃ production</pre>
Respiratory acidosis	\downarrow	↑ (comp)	<u>↑</u>	↑ PCO2	↑ renal HCO ₃ production
Metabolic alkalosis	1	↑	↑ (comp)	↑ HCO3 ⁻	ventilation renal HCO ₃
Respiratory alkalosis	1	↓ (comp)	\downarrow	↓ PCO ₂	renal HCO ₃

Q Mixed acid-base disturbances

pН	HCO ₃ -	PCO ₂	Diagnosis	Test	Normal	Decrease Value	Increase Value
7.09	15	50	Mixed acidosis	pH	7.35-7.45	Acidosis	Alkalosis
7.09	15	50	Iviixeu aciuosis	PaCO2	35-45	Alkalosis	Acidosis
7 (0	20	20	Minud allestada	нсоз	22-26	Acidosis	Alkalosis
7.60	29	30	Mixed alkalosis	PaO2	80-100	Hypoxemia	O2 therapy
7.34	15	29	Metabolic acidosis w/ resp. compensation				

60

📊 Anion gap tool (Na ⁺ – Cl ⁻	هم (⁻– HCO₃-ً)	A	♥ الفكرة: إذا الد AG عالى = فى أضماض جديدة بالحسر إذا AG طبيعى بنس II عالى = الجسم حسر
<u>Type</u>	AG	<u>Cl</u> -	Causes
High AG (normochloremic)	>16	Normal	DKA, lactic acidosis, salicylates, methanol, starvation
Normal AG (hyperchloremic)	8–16	↑ (Diarrhea, RTA, Addison's, CA inhibitors

مهم Clinical case diagnostics

рН	HCO ₃ -	PCO ₂	Anion gap	Interpretation
7.12	18	50	—	Mixed acidosis
7.60	29	30		Mixed alkalosis
7.15	8	24	—	Metabolic acidosis (partial resp. comp.)
7.25	12	28	AG = 28	Metabolic acidosis w/ resp. comp. (e.g diabetic ketoacidosis)
7.34	15	29	AG = 9	Normal AG → hyperchloremic metabolic acidosis (e.g diarrhea)

Common disorder triggers

Disorder	Examples
Metabolic acidosis	DKA, diarrhea, RTA, salicylates, CA inhibitors
Respiratory acidosis	Brain injury, pneumonia, emphysema, lung disorders
Metabolic alkalosis	Vomiting, diuretics, aldosterone excess, NaHCO3 overdose
Respiratory alkalosis	High altitude, fear, hyperventilation

🗳 Aldosterone & metabolic alkalosis

Mechanism

↑ Aldosterone → ↑ tubular K⁺ secretion → K⁺ depletion → ↑ H⁺ secretion → ↑ HCO₃⁻ reabsorption & new HCO₃⁻ generation

 $Diuretics \rightarrow \downarrow ECV \rightarrow \uparrow RAAS \rightarrow \uparrow aldosterone \rightarrow \uparrow K^{+} \& H^{+} loss \rightarrow \uparrow HCO_{3}^{-} retention and production$

X	📌 Normal reference values			
	Metric	Range		
	рН	7.35–7.45		
	PaCO ₂	35–45 mmHg		
	HCO ₃ -	22–26 mEq/L		
	AG	8–16 mEq/L		

рН	HCO3-	PCO ₂	Acid-Base Disorder ?
7.34	15	29	Metabolic acidosis
7.49	35	48	Metabolic alkalosis
7.34	31	60	Respiratory acidosis
7.62	20	20	Respiratory alkalosis
7.09	15	50	Acidosis: respiratory + metabolic

Female Reproductive System:

Female reproductive functions

Fx.	Details
1. Prepares for conception	Through hormonal cycles and structural development
2. Maintains pregnancy	Supports fertilized ovum to develop fetus

Female reproductive organs

Organs	Notes
Ovaries, Fallopian tubes, Uterus, Vagina, Mammary glands	Coordinate with hormones for reproduction
• Ovum expelled mid-cycle \rightarrow abdominal cavity \rightarrow fallopian to	$be \rightarrow uterus$

• If fertilized, develops into fetus/placenta/membranes

🔗 Oogenesis

Stage	Details
Primordial germ cells	Migrate to ovary surface, divide, become oogonia
Oogonia	Surrounded by granulosa cells \rightarrow form primordial follicles
Primary oocyte	Arrested in prophase I
First meiotic division	Completed post-puberty: forms secondary oocyte + polar body
Second meiotic division	Completed if fertilization occurs

Oocyte timeline

Time	Oocyte status	Oogenesis	Follicle Development
5th fetal month	Mitosis ends, meiosis starts	Before birth Repeated cell divisions	in Ovary
Birth	~1–2 million primary oocytes	Migrates to ovarian cortex	Granulosa cells Primordial follicle
Puberty	~300,000 remain	At birth (1 to 2 million occytes)	Primary follicle
Reproductive years	Only 400–500 mature and ovulate	Each month from puberty to menopause	Ļ
Menopause	Few remain; all degenerate	First polar body Secondary occyte (degenerates) Secondary in metaphase II)	Preovulatory (mature) follicle

Sonadotropic hormones

Hormone	Effects
FSH & LH	Stimulate ovarian function post-puberty
No FSH/LH	Ovaries inactive (e.g in childhood)
Puberty onset	Pituitary secretes more FSH/LH (age 9–12)
Menarche	First menstrual cycle

Hormonal cycle dynamics

Phase	Hormonal changes	
Early cycle	FSH > LH, both rise gradually	
Mid-cycle	Estrogen peaks \rightarrow LH surge	
Ovulation	Triggered by LH surge	E 200 - FSH
Post-ovulation	Estrogen drops, progesterone increases	0 4 8 12 16 20 24 28 Days of female sexual cycle

🍞 Follicular development

Follicle type	Characteristics	Secondary
Primordial	Single granulosa layer; oocyte in prophase secrete an oocyte maturation-inhibiting factor that keeps the ovum suspended in its primordial state	The theca differenti two layers: 1) Theca interna, el
Primary	Granulosa cells proliferate; zona pellucida forms. (after puberty)	characteristics, s additional steroi
Secondary	Antrum forms; granulosa become corona radiata	hormones. 2) The theca extern develops into a h
Vesicular	Rapid growth due to FSH + estrogen + LH	vascular connect capsule.

Only one follicle fully matures each cycle; others undergo atresia •

The early growth of the primary follicle up to the antral stage is stimulated mainly by FSH alone.مهم •

follicle

ntiates into

- epithelioid secrete oid sex
- erna, highly ective tissue

مھم Ovulation

Trigger	Effects
LH surge	 Final follicle maturation Granulosa/theca → progesterone secretion Estrogen falls - Ovum released

🐴 Ovulation mechanism

Step	Action
1	LH surge
2	Theca externa enzymes weaken wall
3	Neovascularization, prostaglandin release
4	Follicle swells
5	Stigma ruptures, ovum discharged

Positive feedback: estrogen & LH surge

Trigger	Effect
Sustained high estrogen	Switches from negative to positive feedback \rightarrow LH surge
Granulosa secretes progesterone	May enhance LH release
Figure	

• LH increases 6–8x; FSH increases ~2x

Female reproductive cycle :

Phase	events
Follicular	- FSH stimulates follicle growth - Estrogen secreted - Endometrial proliferation
Ovulation	- LH surge - Ovum released
Luteal	 Corpus luteum forms - Secretes progesterone, estrogen, inhibin Negative feedback \ FSH/LH
Menstruation	- Hormone drop \rightarrow endometrial necrosis - Vasospasm, prostaglandins, leukocytes - 50–150 mL flow with fibrinolysin

6 Corpus luteum & luteal phase

Corpus luteum	 From granulosa & theca cells - Fills with lipids → yellow (lutein) Secretes estrogen, progesterone, inhibin 		
Involution	 Begins ~12 days after ovulation - Becomes corpus albicans Replaced by CT and absorbed over months 		
Pregnancy	hCG (placenta) prolongs corpus luteum life (2-4 months) *imp* - hCG (placenta) prolongs corpus luteum life (2-4 months) بالتالي لو تم از الة الجسم الأصفر بعد هالمدة عادي ما رح يصير اجهاض ويستمر الحمل		

🔁 Gonadotropins & puberty

Hormone	Role	Another hormone with almost exactly
FSH & LH	- Required for ovarian cycle - Absent during childhood	the same properties as LH, chorionic gonadotropin, which is secreted by the
GnRH	- Pulsatile, every 90 min - Stimulates FSH/LH release	placenta, can act on the corpus luteum
Puberty	 Starts age 9–12 Menarche = first menstruation During growth of the follicles, estrogen is mainly secreted. 	to prolong its life—usually maintaining it for at least the first 2 to 4 months of pregnancy. مهم

Female hormones in cycle

Day	Hormonal changes		
Days 1–5	FSH $\uparrow \rightarrow$ follicle growth, estrogen starts rising	Gonadotrophic hormone levels	
~Day 12–14	Estrogen peak \rightarrow LH surge \rightarrow ovulation		F5H
Post-ovulation	<u>↑ Progesterone</u> ↓ Estrogen Inhibin released	Ovarian cycle	Image: Second
Late luteal	\downarrow All hormones *especially progesterone*, \rightarrow menstruation	Ovarian hormone levels	Estrogen Inhibin

Endometrial cycle

Phase	Description
Proliferative	- Estrogen-driven - Epithelial/stromal proliferation - Thickness ↑ to 3–5 mm by ovulation
Secretory	 Progesterone-driven Glands: tortuous, secrete glycogen lipid and glycogen deposits increase greatly in the stromal cells Vessels proliferate, edema ↑ Thickness peaks at 5–6 mm *check the black pic below*
Menstruation	- Hormone withdrawal - Vasospasm, necrosis, bleeding - Flow: 50-150 mL with leukocytes

مهم Functions of estrogens م

System	Effects	 From the time of fertili secretions, called "uter ovum.
Genitalia	Maturation of ovaries, tubes, uterus, vaginaStratified epithelium (vagina)	Then, once the ovum in cells on the surface of the begin to digest the end substances, thus makin early implanting embra NOTES "The whole purpose secretory endometrium appropriate conditions f
Endometrium	- Gland/stroma proliferation - Prepares for implantation	the monthly cycle.
Breast	- Ductal growth $$ - Fat deposition $$ - Stromal tissue \uparrow	
Bone	 ↓ Osteoclast activity - Epiphyseal fusion (growth stops earlier) - Post-menopause → osteoporosis 	
Metabolism	 ↑ Protein deposition - ↑ Basal metabolic rate ↑ Fat in breast, buttocks, thighs 	

💮 Functions of progesterone

Target	Effect
Uterus	 Secretory transformation of endometrium ↓ Myometrial contractions (maintain pregnancy)
Breasts	 Lobulo-alveolar development ↑ Size, fluid retention Prepares for lactation (but prolactin needed for milk)

Fertilization and Implantation:

Maturation and fertilization of the ovum

ملاحظة: غيّرت تسلسل المحاضرات ابتداءً من هون بحيث حطيت المحاضرات الي بتحكي عن الم**Female** ورا بعض عشان التسلسل يكون أفضل

Secretory Phase (Progestational Phase)

ation until the time implantation, the uter re milk," provide nutrition for the early div

its in the endometrium, the trophoblastic planting ovum (in the blastocyst stage) rium and absorb the endometrial stored at quantities of nutrients available to the

> rial changes is to produce a high amounts of stored nutrients to p

Stage	Details
Ovum entry	 Secondary oocyte enters fallopian tube via fimbriae Cilia activated by estrogen - 98% success Slow fluid current guides ovum
Fertilization site	- Occurs in ampullae of fallopian tube
Sperm transport	Aided by: 1. Prostaglandins in semen stimulate uterus/tube contractions2. Oxytocin released during female orgasm

A Capacitation of spermatozoa

Change

Description

Pre-capacitation	 Sperm inhibited by genital tract factors (cholesterol-rich) Tough acrosomal membrane
In female tract *imp to know that this happens in Female genital tract not in epididymis*	 Inhibitory factors washed away Cholesterol loss weakens head of the sperm Ca²⁺ influx ↑ flagellar motility + Ca²⁺ enables acrosome enzyme release Capacitation: 1–10 hours

Acrosome reaction

Process	Details	
Enzymes	- Hyaluronidase: breaks down granulosa cell matrix - Pr	oteolytics: digest tissue proteins
Action	 Binds to zona pellucida receptors Acrosome dissolves, releases enzymes Pathway opens for sperm entry Sperm and oocyte membranes fuse within 30 minutes Genomes combine to form zygote (23 pairs) 	Dispersed corons radiats Dispersed corons r

O Polyspermy prevention

Trigger	Calcium influx following sperm-oocyte fusion
Response	- Cortical granule exocytosis
	- Enzymatic alteration of zona pellucida
	- Blocks polyspermy (prevents entry of additional sperm)
	- · · · · · · · · · · · · · · · · · · ·

🚗 Fertilized ovum transport

Feature	Notes
Duration	3–5 days to reach uterus
Mechanism	- Fluid current + cilia beat toward uterus
	- Isthmus remains contracted ~3 days (Progesterone relaxes it)
Nutrition	Tube secretions nourish blastocyst
Division	Blastocyst forms (\approx 100 cells) before reaching uterus

Implantation in uterus

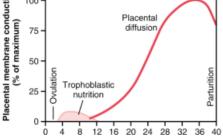
Feature	Notes
Timeline	5–7 days post-ovulation - 1–3 days in uterus pre-implantation بكون داخل الرحم لكن ما انزر ع

Nutrition	Uterine milk (endometrial secretion) feeds blastocyst
Mechanism	 Trophoblast enzymes digest endometrium Trophoblast absorbs nutrients

Placental development

Event	Timeline/Feature	
Trophoblast + adjacent cells proliferate	Placenta and membranes form	Placental Placental septum Stratum sponjoisum Matemat Limiting layer
Capillaries grow in cords	Fetal heart pumps blood by day 21	Ville States States
Maternal sinuses form	Surround trophoblastic cords	Intravilus Armion Trophoblast
Placental villi grow	Interface for maternal-fetal exchange	Chorion Umbilical activity Marginal Umbilical vena- tinus Umbilical cord -

A Placental circulation


Fetal side	Maternal side
2 umbilical arteries \rightarrow capillaries in villi \rightarrow 1 umbilical vein back to fetus	Uterine arteries \rightarrow sinuses \rightarrow uterine veins

Early embryo nutrition *imp*

Stage	Source
Week 1	مهم Decidual tissue only
Up to week 8	Continued decidual digestion
After day 16	Placenta begins support (partial)
Later pregnancy	Placenta thins and grows $\rightarrow \uparrow$ diffusion capacity

Placental functions

Fx.	Detail
Respiration	Simple diffusion of O_2 (maternal \rightarrow fetal)
Nutrition	Glucose by facilitated diffusion
Excretion	Waste elimination
Endocrine	HCG, etc
Protection	Barrier function

Feature	Detail	¹⁰⁰ T
PO ₂ gradient	20 mmHg (mother \approx 50, fetus \approx 30)	80 - Fetal
Fetal hemoglobin	-Binds 20–50% more O2 than maternal Hb	ind do
	-curve shifts to the left *imp *	Hatemal
Hb concentration	Fetal blood has 50% more Hb	20- Human
Bohr effect	$\text{CO}_2 \text{ loss} \rightarrow \text{alkalinity} \rightarrow \uparrow \text{O}_2 \text{ affinity}$	0 20 40 60 80 100
		Po ₂ (mm Hg)

Hormones in pregnancy

HCG- From trophoblast Detected day 8–9 post-ovulation - Peaks 10–12 weeks 4, declines by 16–20 - Maintains corpus luteum - Stimulates feta l testes to produce testosteroneThe placenta converts the androgen hormone produced by the fetal adrenal cortex, delydroepiandrosterone (DHEA), usetogen. ** The placenta converts the androgen hormone produced by the fetal adrenal cortex, delydroepiandrosterone (DHEA), usetogen. ** The placenta converts the androgen hormone produced by the fetal adrenal cortex, delydroepiandrosterone (DHEA), usetogen. ** The placenta converts the androgen hormone produced by the fetal adrenal cortex, delydroepiandrosterone (DHEA), usetogen. ** The placenta converts the androgen hormone produced by the fetal adrenal cortex, delydroepiandrosterone (DHEA), usetogen. ** The placenta converts the androgen hormone produced by the fetal adrenal cortex, delydroepiandrosterone (DHEA), usetogen. ** The placenta converts the androgen hormone produced by the fetal adrenal cortex, delydroepiandrosterone (DHEA), usetogen. ** The placenta converts the androgen hormone produced by the fetal adrenal cortex, delydroepiandrosterone (DHEA), usetogen. ** The placenta converts the androgen until the fetus has delydroepiandrosterone (DHEA), usetogen. ** The placenta converts the androgen until the fetus has delydroepiandrosterone (DHEA), usetogen. ** The placenta convert the advected blood and converts the androgen until the fetus has delydroepiandrosterone (DHEA), usetogen. ** The placenta convert the advected DHEA (via fetal DHEA), usetogen until the fetus has delydroepiandrosterone (DHEA), usetogen until the fetus has 	Hormone	Source & function	
 Enlarges uterus, breast, genitalia - Relaxes pelvic joints Progesterone From corpus luteum early(involutes slowly after the 13th to 17th week), placenta later Supports endometrium -↓ Uterine contractility 	HCG	- Peaks 10–12 weeks، declines by 16–20 - Maintains corpus luteum	the fetal adrenal cortex, dehydroepiandrosterone (DHEA), into estrogen. ** The placenta cannot produce estrogen until the fetus has developed to the point that its adrenal cortex is secreting DHEA into the blood. The placenta extracts DHEA from the fetal blood and converts it into estrogen, which it then
Progesterone - From corpus luteum early(involutes slowly after the 13th to 17th week), placenta later - Supports endometrium -↓ Uterine contractility	Estrogen		gonadotropin Estrogens - 22 0 0 - 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- Sumulates tube & uterus secretion - Prepares breast for factation $\int_{0}^{\frac{1}{4}} \int_{0}^{\frac{1}{4}} \int_{0}^{\frac$	Progesterone		u0311110 0 000 0000 0000 0000 0000 0000

Pregnancy, Labor and Lactation:

Response of the mother's body to pregnancy

Category	Notes
Weight gain	 Average: 10–15 kg Mostly in last 2 trimesters Fetus ~3.5 kg, amniotic fluid 1.5 kg Enlarged uterus, breasts, blood volume, fat storage
Appetite	 Increased desire for food Caused by fetal nutrient draw + hormones Risk of excess weight gain if uncontrolled (up to 75 lb)

b Metabolism during pregnancy

Factor	Details
Hormones	- Thyroxine, adrenocortical, sex hormones ↑

BMR	- Increases ~15% (latter half of pregnancy)
	- Extra energy for muscle activity
	- Sensation of overheating
	e

Endocrine glands

Gland	Response
Anterior pituitary	 <u>Enlarges</u> ~50% *imp* ↑ ACTH, TSH, prolactin ↓ FSH, LH (inhibited by estrogen & progesterone)
Adrenal cortex	- ↑ Glucocorticoids, aldosterone
Thyroid	- Enlarges, ↑ T ₄ secretion
Parathyroid	 Enlarges - ↑ Ca²⁺ absorption from bone Needed for fetal bone development - ↑ secretion during lactation

Nutrition during pregnancy

Nutrient	Importance
Protein, calcium, phosphate, iron	Required in large amountsStored in placenta & maternal reserves
Iron	- Deficiency \rightarrow hypochromic anemia
Vitamin D	- Helps absorb calcium (normally poorly absorbed)
Vitamin K	- Prevents neonatal hemorrhage (esp. brain)
Fetal growth	- Greatest in 3rd trimester (weight almost doubles in last 2 months)

V Cardiovascular changes

Factor	Change	6-
Cardiac output	 ↑ by 30–40% (peaks by week 27) - Drops slightly last 8 weeks 	(iters)) (iters)) 1 - 1 1 - 1
Placental blood flow	- ~625 ml/min	□ 4
Blood volume	 ↑ by ~30% Caused by aldosterone, estrogens Extra RBCs from active marrow Buffer for delivery bleeding (~1–2 L extra, 350 ml lost) 	Duration of pregnancy (weeks) Therefore, at the time of the birth of the baby, the mother has about 1 to 2 liters of extra blood in her circulatory system. Only about 350 ml is normally lost through bleeding during delivery of the baby, thereby allowing a considerable safety factor for the mother.

🚧 Respiratory changes

Factor	Effect
O2 use	$\uparrow 20\%$ due to $\uparrow BMR + size$
Ventilation	↑ minute ventilation
Diaphragm	Pressed up $\rightarrow \uparrow RR$
Progesterone	↑ sensitivity to CO₂ at brainstem

🔗 Renal changes

Function	Notes
Urination	\uparrow due to fluid load and excretion
Tubular function	↑ Na ⁺ , Cl ⁻ , water reabsorption
GFR	↑ via vasodilation (relaxin)

Labor & parturition

Trigger	Mechanism	
Estrogen/progesterone	 Estrogen > progesterone → ↑ uterine contractility Estrogen ↑ gap junctions 	
Oxytocin	 ↑ Receptors near term ↑ Secretion during labor - Cervical stretch → positive feedback 	
Fetal hormones	- Fetal oxytocin, cortisol, prostaglandins all \uparrow contractions	
Mechanical	 Uterine stretch ↑ excitability Cervical stretch = reflex uterine contraction Twins born ~19 days earlier 	**Note especially that twins are born, on average, 19 days earlier than a single child, which emphasizes the importance of mechanical stretch in eliciting uterine contractions stretching or irritation of nerves in the cervix initiates reflexes to the body of the uterus, OR result simply from myogenic transmission of signals from the cervix to the body of the uterus.

Positive feedback in labor

Step	Process
1	Fetal head stretches cervix
2	Cervical stretch $\rightarrow \uparrow$ uterine contractions
3	Contractions push fetus \rightarrow more stretch
4	Feedback loop continues until delivery
Failure	Weak contractions \rightarrow feedback halts

b Abdominal muscles during labor

• Pain from strong uterine contractions → neurogenic reflexes → trigger abdominal contraction → aids expulsion

(L) Stages of labor

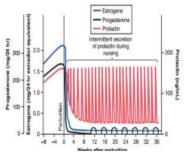
Stage	Duration
1st	True labor onset \rightarrow full cervical dilation
2nd	Full dilation \rightarrow birth of baby
3rd	Baby delivery \rightarrow placenta delivery
4th	Placenta delivery \rightarrow maternal stabilization (~6 hrs)

Placenta delivery

Event	Notes
Separation	Opens sinuses \rightarrow bleeding (~350 ml)
Uterus contraction	Constricts vessels - Prostaglandins help - Shearing detaches placenta (10-45 min)

😖 Labor pain

ase	Cause	**It is fortunate that the contractions of labor of intermittently, because strong contractions imp
arly	Uterine hypoxia from blood vessel compression	or sometimes even stop blood flow through the placenta and would cause death of the fetus if th contractions were continuous. Indeed, overuse o
Late	Cervical & perineal stretch, vaginal tearing	various uterine stimulants, such as oxytocin, can cause uterine spasm rather than rhythmic contractions and can lead to death of the fetus.


Lactation & breast development

Hormone	Fx.	
Estrogen	Puberty: ductal growth + fatPregnancy: extensive ductal branching	
Progesterone	- Lobule-alveolar development - Secretory characteristics	
Prolactin	 ↑ 10–20x during pregnancy Milk production post-delivery Suppressed by estrogen/progesterone during pregnancy Colostrum (pre-milk) produced first If nursing does not continue, the breasts lose their ability to produce milk within 1 week or so. 	

NOTES

Once the ductal system has developed, progesterone acting synergistically with estrogen, as well as with the other hormones just mentioned—causes additional growth of the breast lobules, with budding of alveoli and development of secretory characteristics in the cells of the alveoli.

Oxytocin	- Milk ejection (let-down)
	- Suckling \rightarrow hypothalamic signal \rightarrow oxytocin release
	- Myoepithelial contraction
	- When the baby suckles, it receives virtually
	no milk for the first half minute or so.

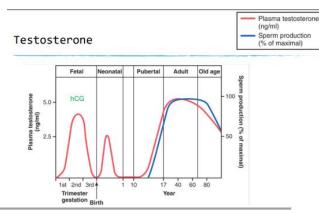
() Suppression of ovarian cycle

Cause	Effect
Prolactin + breast stimulation	\downarrow GnRH $\rightarrow \downarrow$ FSH & LH \rightarrow no ovulation during nursing

Male Reproductive System:

GnRH and pituitary hormone control

Hormone		
GnRH	 Secreted intermittently every 1–3 hours Stimulus intensity depends on frequency & quantity 	
LH	- Mirrors GnRH pulses closely - Stimulates Leydig cells to produce testosterone	
FSH	 Slower, steadier changes Binds Sertoli cells → supports spermatogenesis 	** Furthermore, when tumors develop from the interstitial cells of Leydig, great quantities of testosterone are secreted. When the germinal epithelium of the testes is destroyed by x-ray treatment or excessive heat, the
Inhibin	- From Sertoli cells $-\downarrow$ FSH when spermatogenesis is high	Leydig cells, which are less easily destroyed, often continue to produce testosterone.



Phase	Description
Initiation	- Starts at puberty - Needs FSH + testosterone
Duration	- ~74 days total
Location	- Seminiferous tubules
Hormonal control	 - LH → Leydig cells → testosterone - FSH → Sertoli cells → spermatogenic substances
Feedback	 ↓ sperm → ↑ FSH Fast sperm production → ↓ FSH via inhibin

Testosterone production

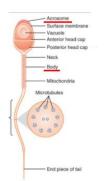
Stage

Fetal	hCG stimulates Leydig cells to make testosterone
Newborn	Leydig cells active for a few months
Childhood	Leydig cells mostly inactive
Puberty onward	Pituitary LH drives production
	Pituitary LH \rightarrow active Leydig cells
Peak	Ages 20–50
Decline	Drops to 20–50% by age 80

Oracle States and Sta

Function	Role
SRY gene	 Triggers differentiation into testes Leads to testosterone production
Organ development	Penis, scrotum formationTestes descent in last 2–3 gestational months

الله Testosterone adult effects مهم


Trait	Effect
Genitalia	Penis, scrotum, testes enlarge post-puberty
Hair	\uparrow Pubic, facial hair; \downarrow scalp hair in baldness-prone individuals
Voice	Larynx enlargement, deeper voice
Skin	Thicker skin, potential acne
Muscle	↑ Protein formation and muscle mass
Bone	↑ Matrix, Ca ²⁺ retention, thickness
Metabolism	↑ Basal rate ~15%
RBCs	↑ by 15–20%
Electrolytes	↑ Na ⁺ reabsorption in kidney

Spermatogenesis overview

Stage	Description	**Spermatogonia that cross the barrier into the Sertoli cell layer become progressively modified and enlarged to form large primar
Location	Seminiferous tubules	spermatocytes. **The rate of spermatogenesis is constant and cannot be accelerated by hormones such as gonadotropins or androgens.
Start	After puberty, continues lifelong	** In the female, the mitotic proliferation of germ cells takes place entirely before birth. In the male, spermatogonia proliferate only
Duration	~74 days total	after puberty and then throughout life ** The entire period of spermatogenesis, from spermatogonia to spermatozoa, takes about 24 days

Spermatogenesis process (from embryo to adult)

Step	Detail
Embryo	Primordial germ cells migrate \rightarrow become spermatogonia
At puberty	Spermatogonia undergo mitosis \rightarrow generate Type A & Type B
Type $\mathbf{B} \to \mathbf{m}\mathbf{e}\mathbf{i}\mathbf{o}\mathbf{s}\mathbf{i}\mathbf{s}$	\rightarrow Primary spermatocytes (2N DNA)
Meiosis	Each produces 4 spermatozoa (2X, 2Y)
From spermatids \rightarrow spermatozoa	No division; structural change only

ههم تمييز الاسم (Spermiogenesis (spermatid → spermatozoon

Part	Feature
Head	Condensed nucleus Acrosome (from Golgi) with enzymes (hyaluronidase, proteases)
Tail	Microtubules, mitochondria (energy supply, membrane)
Fx.	Allows fertilization: enzymes digest ovum's protective layers

§ Spermatogenesis & temperature

Factor	Effect
Heat ↑	Destroys germ cells besides spermatogonia. ↓ Spermatogenesis
Cold reflex	Scrotum contracts to preserve temp
Function	Scrotum maintains testes ~2°C below core body temp
Storage	24–48h at body temp
	Weeks refrigerated, Years frozen at -100°C

🕼 Epididymis role

Fx.	Detail
Transit	Sperm pass slowly (several days)
Motility	Achieved after 18–24h, but Epididymal fluid contains proteins that inhibit motility until ejaculation

Hormonal factors stimulating spermatogenesis

Hormone	Function
Testosterone	Growth & division of testicular germinal cells
LH	Stimulates Leydig cells \rightarrow testosterone
FSH	Enables spermiogenesis (spermatids \rightarrow sperm) *look at Rt.*
Estrogen	Formed by Sertoli cells from testosterone
Growth hormone	Supports metabolic activity & early spermatogonia division

3. Follicle-stimulating hormone \rightarrow without this stimulation, conversion of the spermatids to sperm (the process of spermiogenesis) will not occur.

A Semen composition

Source	% / Function	
Vas deferens	~10%, contains sperm	
Seminal vesicle	~60%, rich in fructose, prostaglandins, fibrinogen	**Prostaglandins are believed to aid fertilization in two ways: (1) by reacting with the female cervical mucus to make it more receptive to sperm movement and (2) by possibl causing backward, reverse peristaltic contractions in the uterus and fallopian tubes to
Prostate	~30%, milky fluid: citrate, enzymes, calcium, profibrinolysin. (alkaline fluid)	move the ejaculated sperm toward the ovaries (a few sperm reach the upper ends of the fallopian tubes within 5 minutes). **A slightly alkaline characteristic of the prostatic fluid may be quite important for successful fertilization of the ovum because the fluid of the vas deferens is relatively acidic owing to the presence of citric acid and metabolic end products of the sperm and
Bulbourethral glands	Few Mucus secretion	consequently, helps to inhibit sperm fertility. Also, the vaginal secretions of the female are acidic (pH of 3, 5 to 4, o). Sperm do not become optimally motile until the pH of the surrounding fluids rises to about 6.0 to 6.5. Consequently, it is probable that the slightly alkaline prostatic fluid helps to neutralize the acidity of the other seminal fluids during
рН	~7.5, alkaline from prostate neutralizes acidic fluids	ejaculation and thus enhances the motility and fertility of the sperm. **The average pH of the combined semen is about 7.5, the alkaline prostatic fluid having more than neutralized the mild acidity of the other portions of the semen.

Fertility support mechanisms

Factor	Action
Prostaglandins	react with cervical mucus, ↑ uterine contractions
Alkalinity	Neutralizes vaginal and vas deferens acidity

Spermatogenesis vs oogenesis *<u>imp</u>*

Feature	Males	Females
Germ cell division	After puberty, lifelong	All mitosis before birth
Meiosis products	4 sperms	1 ovum + polar bodies
Post-meiosis	Spermatids mature	No further changes without fertilization

Male sexual act – nervous control

Phase	Nervous system

Initiation	Spinal reflex (lumbar + sacral) via psychic or tactile stimuli
Erection	Parasympathetic (pelvic nerves) Release ACh, NO, VIP \rightarrow cGMP $\uparrow \rightarrow$ vasodilation
Emission	Sympathetic (T12–L2) Vas deferens, prostate, seminal vesicles contract
Ejaculation	Rhythmic contraction of genital tract & penile tissue
Resolution	Erection ceases within 1–2 minutes

Erection physiology

Action	Detail
NO release	Activates guanylyl cyclase $\rightarrow \uparrow cGMP$
Smooth muscle relaxation	Corpora cavernosa & spongiosum dilate
Blood flow ↑	Sinusoids fill under pressure; venous outflow \downarrow
Result	Penis becomes hard, elongated (erection)

Emission & ejaculation: sympathetic roles

Step	Description
Emission	 Vas deferens, ampulla contract → sperm into urethra Prostate + seminal vesicles release fluids
Ejaculation	 Internal urethra fills - Sensory signals → reflex contraction Rhythmic contractions expel semen
Orgasm	Emission + ejaculation phase
Resolution	End of erection & sexual excitement within 1–2 min

Abnormalities in the Reproductive System | Last Physio Lec in basic years 🛇

Abnormal spermatogenesis and male fertility

Condition	Details
Sterility	 Due to damage to seminiferous epithelium Causes: bilateral orchitis (mumps), congenital degeneration, high testicular temperature Leydig cells may still produce testosterone after damage (not much sensitive to radiation)
Cryptorchidism	 Failure of testes to descend into scrotum Testes remain abdominal → can't produce sperm Causes: defective testosterone - Treatment: surgical correction

Factor	Detail
Sperm count	- Normal: ~120 million/mL m (35 million to 200 million (total ~400 million in each ejaculate.) - Infertility risk: <20 million/mL الأرقام مهمة ممكن بيجي عليها سؤال -quantity of semen ejaculated bout 3.5 ml.
Morphology	- May be abnormal (2 heads, odd tails, malformed heads) - Even with normal count, infertility possible
Motility	 Structurally normal sperm may be nonmotile or poorly motile Nonmotility = high infertility risk . Whenever the majority of the sperm are morphologically abnormal or are nonmotile, the person is likely to be infertile, even though the remainder of the sperm appear to be normal.

🎯 Male sexual function disorders مهم

Issue	Note
Prostate gland	 Grows at puberty → static until ~50, then involutes BPH causes urinary obstruction Cancer stimulated by testosterone Estrogens/removal of testes used as treatment
Hypogonadism (fetal)	 Nonfunctional testes → female organ development Caused by lack of testosterone suppression of female traits
Hypogonadism (pre-pubertal)	- Eunuchism: infantile organs, weak muscle, high-pitched voice, feminized hair distribution The height of an adult eunuch is slightly <i>greater</i> than that of a normal man.
Hypogonadism (post-pubertal)	 Testes removed → organs regress Low libido, poor ejaculation, mild voice regression

O Testicular tumors and hypergonadism

Туре	Effect	
Leydig cell tumors	 Massive testosterone secretion (100x of testosterone) In children: rapid growth, early puberty - Skeletal epiphyses fuse ear 	
Germinal epithelium tumors	 More common - Teratomas with mixed tissues (teeth, skin, hair) Secrete hCG or estrogen 	

Erectile dysfunction (impotence)

Cause	Note
Neurologic	Trauma to parasympathetic nerves (e.g. post-prostate surgery)
Hormonal	Low testosterone
Drug-induced	Nicotine, alcohol, antidepressants
Vascular	Hypertension, diabetes, atherosclerosis

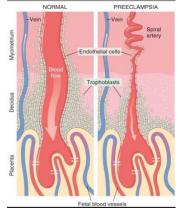
Ovarian secretion disorders:

Condition	Detail
Hypogonadism (pre-puberty)	 Female eunuchism: no secondary sex traits Infantile organs - Prolonged growth of long bones
Hypogonadism (adult)	- Ovary removal \rightarrow regression of uterus, vagina, breasts, pubic hair

Female infertility and ovulation issues

Condition	Cause	
Female sterility	- Most common: failure to ovulate - Causes: low gonadotropins, ovarian defect	99° 7 Ovulation
Anovulatory cycles	 LH surge insufficient - No ovulation → no corpus luteum No progesterone, cycle shortens 	98°
Ovulation Detection	 Urine: [↑] pregnanediol (progesterone metabolite) Body temp: [↑] by 0.5°F during luteal phase (due to progesterone) 	97° - 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Day of cycle

N Ovulation treatment


Method	Notes
hCG therapy	- <u>Mimics LH</u> - Stimulates ovulation
	- Overuse: multiple follicle ovulation \rightarrow multiple births (e.g. 8 babies)

Polycystic ovarian syndrome (PCOS)

Feature	Detail
Mechanism	 Hormone imbalance in reproductive years Cysts: fluid sacs with immature follicles - Eggs not released regularly
Possible causes	- Hereditary - Insulin resistance - Excess androgens - Low-grade inflammation
Symptoms	- Irregular periods - Hirsutism - Enlarged polycystic ovaries
Treatment	- Lifestyle change - Hormonal therapy (combination pills, progestins) - Metformin

💥 Preeclampsia and eclampsia

Preeclampsia	 Pregnancy-induced hypertension (late pregnancy) Symptoms: proteinuria, edema, wt gain, arterial spasm Cause: placental ischemia → TNF-α, IL-6 ↑ → endothelial dysfunction
Eclampsia	Severe preeclampsia: seizures, coma, organ failureHigh mortality without treatment
Treatment	- Vasodilators - Emergency delivery \rightarrow mortality <1% الحل هو توليد المريضة

The End

لا يتَعاظَمهُ شيء؛ هو العظيم الأعظم، ولا يعجزهُ شيء؛ هو القدير القادر، ولا يخفى عليه شيء؛ هو العليم الأعلم. لا يَعظُمُ عليه أمرك، ولا يُعجزه مُرادك، ولا يخفىٰ عليه أنين صدرك، وشدَة احتياجك، وإنَ تكُ مثقال دمعة من ألم يراها، وإن تكُ مثقال زفرة من همّ يسمعها، هو الأقرب والأرحم والأحكم، أحاط بكل شيءٍ علمًا؛ وسيُعطي حتىٰ يُرضي، وسيجبر، وسيؤتِ كُلَّ قلبٍ مؤمنٍ صادقٍ سؤله، فتوكل عليه إنهُ يُحبّ المُتَوكلين