Heart Sounds

Systolic: ventricular contraction to eject the blood.

Diastolic: ventricular filling.

Table 1: The pathophysiology of heart sounds & murmurs

	اسمر من: systolic من: AS: مر: MR	colic	Dias	stolic
Valve type	Normal	Abnormal	Normal	Abnormal
Aortic & Pulmonary	Opened	Closed Stenosis	Closed	Opened Regurgitation
Mitral & Tricuspid	Closed	Opened Regurgitation	Opened	Closed Stenosis

Stenosis: Abnormal OPENING

Regurgitation: Abnormal CLOSURE

Types of Murmurs that is included and we need to know:

Aortic stenosis, Aortic Regurgitation, Pulmonary Stenosis, Pulmonary Regurgitation, Mitral Stenosis, Mitral Regurgitation, Tricuspid Stenosis, Tricuspid Regurgitation, Atrial Septal Defect, Ventricular Septal Defect, Hypertrophic cardiac myopathy

Using the Diaphragm 🧁

Normal heart sounds (total 4 sounds)

1) Aortic region: 2nd intercostal space

Rt. Side of the sternum

2) pulmonary region: 2nd intercostal

space Lt. Side of the sternum

3) ERB's area: 3rd intercostal space Lt.

Side of the sternum 52

4) Tricuspid region: 4th intercostal space

Lt. Side of the sternum

5) Mitral region: 5th intercostal space Lt. Side midclavicular line

Last step of your auscultation to use the bell instead of Diaphragm to listen over the apex (for S3&S4) and at the tricuspid region for left S3

Radiation Notes about each murmur (S C R I P T)

Additional clinical moin Slow rising pulse * Reduced pulse volume* Narrow pulse pressure Apical heave Thrill in aortic region Reduced or absent second heart sound over aortic area* Radiation of murmur to carotid artery*

Character Intensity Additional clinical findings

https://youtu.be/IrWEAucHoA0? si=BQhX4wQFvYOBZTbc

Watch this (highly recommended δ):

1. AORTIC STENOSIS

Site: Right 2nd intercostal space (aortic area) Character: Harsh, crescendo-decrescendo Radiation: To the carotids (especially right)

Intensity: Loud, increases with expiration and leaning forward

MM

Pitch: Medium

Timing: Ejection systolic (mid-systolic)

5. MITRAL STENOSIS

Site: Apex (usually in left lateral position) Character: Rumbling, with opening snap

Radiation: None

Intensity: Low, enhanced with exercise or left lateral decubitus

Pitch: Low (use bell)

Timing: Mid-diastolic (with presystolic accentuation in sinus

rhythm)

2. AORTIC REGURGITATION

Site: Left 3rd intercostal space (left sternal edge)

Character: Blowing, decrescendo

Radiation: May radiate to apex or none

Intensity: Soft, best heard when sitting forward in expiration

Pitch: High

Timing: Early diastolic

Additional clinical findings

Large volume pulse Large volume pulse
Collapsing pulse
Wide pulse pressure
Prominent carotid pulsations
(Corrigan's sign)
Displaced apex beat

Site: Left 2nd intercostal space (pulmonary area)

Character: Harsh, crescendo-decrescendo

Timing: Ejection systolic

6. MITRAL REGURGITATION

Site: Apex

Character: Blowing, pansystolic

Radiation: To the axilla (especially left)

Intensity: Loudest in expiration, enhanced in left lateral

position

Pitch: High

Timing: Pansystolic (holosystolic)

Additional clinical findings

Displaced apex beat Third heart sound

3. PULMONARY STENOSIS

Radiation: To the back or left shoulder Intensity: Increases with inspiration

Pitch: Medium

7. TRICUSPID STENOSIS

Site: Lower left sternal border (LLSB) Character: Rumbling, with opening snap

Radiation: None

Intensity: Increases with inspiration (Carvallo's sign)

Pitch: Low (use bell) Timing: Mid-diastolic

4. PULMONARY REGURGITATION

Site: Left 2nd intercostal space

Character: Blowing Radiation: Minimal

Intensity: Soft, enhanced with inspiration (Graham-Steell murmur)

Pitch: High

Timing: Early diastolic

8. TRICUSPID REGURGITATION

Site: Lower left sternal border

Character: Blowing

Radiation: To right of sternum or epigastrium

Intensity: Increases with inspiration

Pitch: High

Timing: Pansystolic

Additional clinical findings

Elevated JVP with systolic cv wave Pulsatile hepatomegaly Right parasternal heave* Loud pulmonary component of

*If pulmonary hypertension has developed

Important 3!!

- With increasing the Venous return ALL the murmurs become more intense except HOCM & Mitral Valve Prolapse
- Increasing the After load will decrease the stenosis murmurs and increase the **Regurgitation murmurs**
 - HOCM murmur can be auscultated in the ERB's area

MANEUVER	CARDIOVASCULAR CHANGES	MURMURS THAT INCREASE WITH MANEUVER	MURMURS THAT DECREASE WITH MANEUVER
Standing, Valsalva (strain phase)	↓ preload (↓ LV volume)	MVP (‡ LV volume) with earlier midsystolic click HCM (‡ LV volume)	Most murmurs (↓ flow through stenotic or regurgitant valve)
Passive leg raise	† preload († LV volume)	Mast	MVP († LV volume) with later midsystolic click HCM († LV volume)
Squatting	† preload, † afterload († LV volume)	 Most murmurs († flow through stenotic or regurgitant valve) 	
Hand grip	↑↑ afterload → ↑ reverse flow across aortic valve († LV volume)	Most other left-sided murmurs (AR, MR, VSD)	AS (‡ transaortic valve pressure gradient) HCM († LV volume)
Inspiration	↑ venous return to right heart, ↓ venous return to left heart	Most right-sided murmurs	Most left-sided murmurs

4 Auscultation maneuvers: (murmurs)

Watch this (highly recommended):

■ MITRALSTENOSIS

Best heard at: Apex

Patient position: Left lateral decubitus (left(side) **Breathing: After expiration (full expiration)** Bell or diaphragm: Bell (low-pitched)

https://youtu.be/KQ-zBeSBpSM? si=dU3isxGMsHvUcC4N

MITRAL REGURGITATION

Best heard at: Axilla (radiation)

Patient position: supine **Breathing:** full expiration

Bell or diaphragm: Diaphragm (high-pitched)

Aortic STENOSIS

Best heard at: Carotid arteries (radiation)

Patient position: Supine

Breathing: Hold your breath (to not be confused with air sounds in the trachea)

Bell or diaphragm: Bell

Aortic REGURGITATION

Best heard at: ERB's area (can be heard at the aortic region)

Patient position: Leaning forward slightly

Breathing: Full expiration (Inspiration-Expiration-HOLD)

Bell or diaphragm: Diaphragm

To know: if you heard the AR at the aortic region usually it is related to aortic root dilation but if it is at the ERBs area it is related to valvular disease

Special Murmurs

Murmur	Mimics / Features	
Arial Septal	Fixed split S2, systolic murmur →	
Defect (ASD)	mimics Pulmonary Stenosis	
Ventricular Septal	Harsh holosystolic murmur at LLSB	
Defect (VSD)	→ mimics Tricuspid Regurg.	
HOCM	Harsh ejection murmur at Erb's point, ↑ with Valsalva	
Austin Flint	Functional mid-diastolic murmur at	
Murmur	apex in severe AR	_
Patent Ductus Arteriosus	best heard at the upper left sternal border and radiates over the left scapula. Its continuous character is 'machinery-like' (greater pressure: Louder Systolic)	
		-