

LIVER METASTASIS

OUTLINE

- Introduction
- Clinical presentation
- Diagnosis: Histology and Imaging
- Management

INTRODUCTION

The liver is a common site of distant metastasis originating from different neoplasms including gastrointestinal (pancreatic, stomach, colorectal), lung, breast cancers, melanoma (eye, skin), renal and gynaecological system.

Also primary liver tumours such as cholangiocellular carcinomas (CCC), cancers of the bile ducts, may disseminate into the liver.

Gut. 2002 Nov; 51Suppl 6():VII-9.

THE HIGH FREQUENCY OF LIVER METASTASES IS CAUSED BY:

- I. The liver's vast blood supply, which originates from portal and systemic systems.
- 2. The fenestrations of the hepatic sinusoidal endothelium may facilitate penetration of malignant cells into the hepatic parenchyma.
- 3. Humoral factors that promote cell growth and cellular factors, such as adhesion molecules, favour metastatic spread to the liver.
- 4. The liver's geographic proximity to other intra-abdominal organs may allow malignant infiltration by direct extension.

Winter, J., & Auer, R. A. C. (2012)

INTRODUCTION

- Oncologists were so pessimistic about the appearance of hepatic metastases that "no treatment" was often the recommendation.
- Advancing technology and improved surgical techniques.
- Patient selection is the most important aspect of surgical therapy for metastatic disease
 in the liver and clinical follow-up of resected patients has identified those most and least
 likely to benefit. Therefore, realistic expectations and honest patient education is an
 important aspect of treatment.

CLINICAL PRESENTATION

- Variable and subtle.
- Most patients are asymptomatic; a minority may report abdominal pain, jaundice, or pruritus.
- Symptoms of the carcinoid syndrome.
- Physical examination may reveal hepatomegaly, a friction rub over hepatic metastases, or ascites caused by hepatic venous obstruction or peritoneal carcinomatosis.

Kemeny, N., & Kemeny, M. L. (2008)

BIOCHEMICAL LABORATORY TESTS

- The laboratory tests that are available for liver function assessment are not very sensitive.
- CEA remains the most sensitive test for metastatic colon cancer, but even this test can be normal in the presence of liver metastases, especially with minimal hepatic disease.

IMAGING TECHNIQUES

- The choice among the various techniques, and the sequence with which they are used, should be guided primarily by the clinical indication, taking into account the primary type and the different possible treatments, which also depend on the general status of clinical history of the patient.
- Dedicated liver imaging is not needed in patients diagnosed with disseminated, inoperable disease.

Hepatobiliary Tumors Radiol Clin N Am, 49-679,2011

ULTRASONOGRAPHY

- Transabdominal ultrasonography (US)
- Contrast-enhanced US
- Endoscopic ultrasound (EUS)
- Intraoperative US (IOUS): detects 5-10% of missed lesions.

COMPUTED TOMOGRAPHY (CT)

- Non contrast CT.
- Contrast CT.

COMPUTED TOMOGRAPHY (CT)

. Computed tomography of hypervascular liver metastases from a renal primary tumor at the arterial phase.

Computed tomography 3-D reconstruction before surgical showing liver metastases

MAGNETIC RESONANCE IMAGING (MRI)

• Dynamic, breath-hold MR imaging with a gadolinium-based contrast material is considered to be the most sensitive MR technique for detection of hepatic metastases

POSITRON EMISSION TOMOGRAPHY (PET)

- The majority of clinical experience relies on the uptake and use of glucose in human cells.
- 18F-Fluorodeoxyglucose 18FDG, the most commonly used marker in PET imaging, is an analogue of glucose in which a carbon atom is replaced by a radioactive fluorine isotope.
- Combined PET/CT scanners allow the precise localization of the abnormal areas of uptake.

HISTOPATHOLOGY

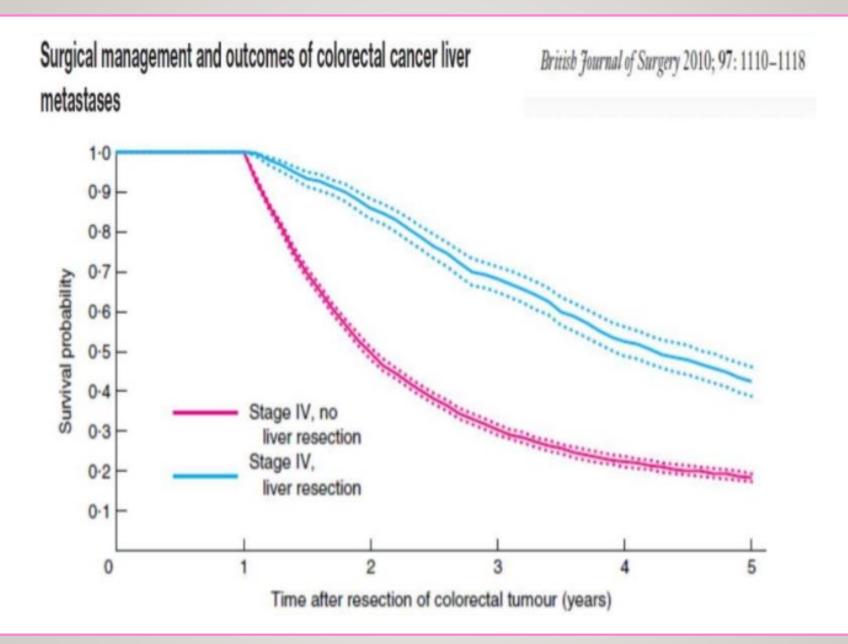
- The histologic appearances of metastatic deposits in the liver may resemble those of the primary tumors.
- Because the metastatic cell population may not be representative of the primary tumour, it can be difficult to determine the site of origin based on the histologic appearance of the metastases alone.

HISTOPATHOLOGY

The initial light-microscopic findings can be used to categorize the tissue into one of three groups:

- I. poorly differentiated carcinoma or adenocarcinoma.
- 2. well-differentiated adenocarcinoma.
- 3. squamous carcinoma.

In most cases, immunohistochemical studies further differentiate these metastases.


Tumor	Antigens
Colonic adenocarcinoma	CEA
Pancreatic carcinoma	CEA, pancreatic carcinoma-associated antigen
Lung carcinoma	CEA, cytokeratin, neuron-specific enolase
Breast carcinoma	CEA, milk-fat globulin, hCG
Thyroid carcinoma	Thyroglobulin
Prostate carcinoma	Prostate-specific acid phosphatase, PSA
Melanoma	S-100, vimentin, neuron-specific enolase
Carcinoid	Chromogranin, neuron-specific enolase
Lymphoma and leukemia	CLA
Sarcoma	
Smooth muscle	Type IV collagen, vimentin, desmin
Skeletal muscle	Myoglobin, vimentin, desmin
Neurogenic	S-100, myelin basic protein
Cartilage	S-100, vimentin
Bone	Vimentin
Germ cell tumors	α-fetoprotien, α1-antitrypsin
Trophoblastic tumors	hCG, α-Fetoprotein

Immunohistochemical antigens for the identification of primary tumors.

CRLM

• Colorectal cancer (CRC) is one of the most common cancers in the world, ranking third in terms of incidence (10.2% of all cancer cases worldwide) and second most common cause of cancer mortality (9.2% of all cancer mortality) in the world. Over 1.8 million new CRC cases and 881,000 deaths are estimated to occur in 2018, accounting for about 1 in 10 cancer cases and deaths.

Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal ACA Cancer J Clin. 2018 Nov;* 68(6):394-424.

CRLM

Management

- Hepatectomy
- Locally ablative therapy
- Chemotherapy

systemic

Hepatic Arterial Infusion (HAI)

Embolization - Chemoembolization

CHEMOTHERAPY

- Neoadjuvant
- Adjuvant
- Palliative

THANK YOU